Water decontamination remains a challenge in several developed and developing countries. Affordable and efficient approaches are needed urgently. In this scenario, heterogeneous photocatalysts appear as one of the most promising alternatives. This justifies the extensive attention that semiconductors, such as TiO 2 , have gained over the last decades. Several studies have evaluated their efficiency for environmental applications; however, most of these tests rely on the use of powder materials that have minimal to no applicability for large-scale applications. In this work, we investigated three fibrous TiO 2 photocatalysts, TiO 2 nanofibers (TNF), TiO 2 on glass wool (TGW), and TiO 2 in glass fiber filters (TGF). All materials have macroscopic structures that can be easily separated from solutions or that can work as fixed beds under flow conditions. We evaluated and compared their ability to bleach a surrogate dye molecule, crocin, under batch and flow conditions. Using black light (UVA/visible), our catalysts were able to bleach a minimum of 80% of the dye in batch experiments. Under continuous flow experiments, all catalysts could decrease dye absorption under shorter irradiation times: TGF, TNF, and TGW could, respectively, bleach 15, 18, and 43% of the dye with irradiation times as short as 35 s. Catalyst comparison was based on the selection of physical and chemical criteria relevant for application on water remediation. Their relative performance was ranked and applied in a radar plot. The features evaluated here had two distinct groups, chemical performance, which related to the dye degradation, and mechanical properties, which described their applicability in different systems. This comparative analysis gives insights into the selection of the right flow-compatible photocatalyst for water remediation.
Given the current grave problems with antibiotic resistance, the discovery of novel, unconventional antibacterial drugs is not just important but also urgent. In this contribution, we report on the synthesis and testing of several composite nanomaterials that may find applications as therapeutic drugs or surface disinfectants. These materials are based on magnetic nanostructures coated with lignin, for example, lignin@FeCo. The magnetic properties of these nanocomposites facilitate removal or localization, whereas the lignin shell provides biocompatibility. These nanomaterials are mild antibacterials in the absence of light, but when illuminated become powerful antibacterial agents with typically ≥6 log units of bacterial reduction in 1-5 min of irradiation. These materials are strongly absorbing, including in the very useful NIR biological window, which we illustrate using 810 nm LED irradiation. We also show that in the short time required for antibacterial action, thermal changes are very small (≤5°C). Further, biocompatibility tests using fibroblasts show very limited cell damage and no enhanced adverse effect during 810 nm NIR illumination. As a surface coating for the active material, lignin provides a "trojan horse" strategy to facilitate the antibacterial action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.