In this paper, we describe a heuristic algorithm based on local search for the Single-Source Uncapacitated (SSU) concave Minimum-Cost Network Flow Problem (MC-NFP). We present a new technique for creating different and informed initial solutions to restart the local search, thereby improving the quality of the resulting feasible solutions (upper bounds). Computational results on different classes of test problems indicate the effectiveness of the proposed method in generating basic feasible solutions for the SSU concave MCNFP very near to a global optimum. A maximum upper bound percentage error of 0.07% is reported for all problem instances for which an optimal solution has been found by a branchand-bound method.
The Assembly Line Part Feeding Problem (ALPFP) is a complex combinatorial optimisation problem concerned with the delivery of the required parts to the assembly workstations in the right quantities at the right time. Solving the ALPFP includes simultaneously solving two sub-problems, namely tour scheduling and tow-train loading. In this article, we first define the problem and formulate it as a multi-objective mixed-integer linear programming model. Then, we carry out a complexity analysis, proving the ALPFP to be NP-complete. A modified particle swarm optimisation (MPSO) algorithm incorporating mutation as part of the position updating scheme is subsequently proposed. The MPSO is capable of finding very good solutions with small time requirements. Computational results are reported, demonstrating the efficiency and effectiveness of the proposed MPSO.
We address the single-source uncapacitated minimum cost network flow problem with general concave cost functions. Exact methods to solve this class of problems in their full generality are only able to address small to medium size instances, since this class of problems is known to be NP-Hard. Therefore, approximate methods are more suitable. In this work, we present a hybrid approach combining a genetic algorithm with a local search. Randomly generated test problems have been used to test the computational performance of the algorithm. The results obtained for these test problems are compared to optimal solutions obtained by a dynamic programming method for the smaller problem instances and to upper bounds obtained by a local search method for the larger problem instances. From the results reported it can be shown that the hybrid methodology improves upon previous approaches in terms of efficiency and also on the pure genetic algorithm, i.e., without using the local search procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.