This investigation means to predict and modeling the fresh and hardened concrete behavior containing fine aggregates from concrete and brick wastes, for different recycled aggregates substitution rates. To succeed this, the design of experiments DOE method was used. It is observed that slump of recycled concrete is significantly influenced by the content in recycled concrete aggregates (RCA), natural sand (NS) and recycled brick aggregates (RBA), respectively.The compressive strength (CS) reaches a maximum value of 83.48 MPa with factors values of 25% RBA, and 75% RCA. And HPC’s based on RBA sand presented greater values of flexural strength at 7 days than HPC’s based on RCA sand, it was revealed that this is due to the RBA fines pozzolanic reaction and the production of new CSHs, which leads to better cement matrix densification.Under optimal conditions, themaximum desirability is 0.65, who has given HPC no added natural sand, by mixing recycled sands RBA (9.5%) with RCA (90.5%).The statistical terms result show that the expected models are very well correlated with the experimental data and have shown good accuracy.
Concrete, a material of prime importance, is widely used in various works. Among the raw materials composing concrete, aggregates come first. It is widely acknowledged that the consumption of natural aggregates increases with the growth in the amount of concrete needed. It has recently emerged that concrete waste can be recycled and reused in civil engineering works after a series of treatments. Moreover, in order to protect the environment and based on the principles of sustainable development, it was considered urgent to produce a High Strength Concrete incorporating recycled materials in addition to silica fume and a high-efficiency superplasticizer. This would certainly help to establish a harmonious sustainable development that guaranties the ecological balance and environmental protection, and prevents the depletion of natural resources. This study is part of a larger research program that that seeks to recover, recycle and valorize construction and demolition wastes. The main objective sought in this article is firstly to use aggregates from demolition concrete in the manufacture of a new concrete with high mechanical and rheological performance, and secondly, to model the behavior of this type of concrete using the Finite Element Method. This modeling aims to evaluate the maximum compressive strengths and compare them with those obtained experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.