Abstract-Recent developments in statistical theory and associated computational techniques have opened new avenues for image modeling as well as for image segmentation techniques. Thus, a host of models have been proposed and the ones which have probably received considerable attention are the hidden Markov fields (HMF) models. This is due to their simplicity of handling and their potential for providing improved image quality. Although these models provide satisfying results in the stationary case, they can fail in the nonstationary one. In this paper, we tackle the problem of modeling a nonstationary hidden random field and its effect on the unsupervised statistical image segmentation. We propose an original approach, based on the recent triplet Markov field (TMF) model, which enables one to deal with nonstationary class fields. Moreover, the noise can be correlated and possibly non-Gaussian. An original parameter estimation method which uses the Pearson system to find the natures of the noise margins, which can vary with the class, is also proposed and used to perform unsupervised segmentation of such images. Experiments indicate that the new model and related processing algorithm can improve the results obtained with the classical ones.
Hidden Markov fields (HMF) models are widely applied to various problems arising in image processing. In these models, the hidden process of interest X is a Markov field and must be estimated from its observable noisy version Y. The success of HMF is mainly due to the fact that the conditional probability distribution of the hidden process with respect to the observed one remains Markovian, which facilitates different processing strategies such as Bayesian restoration. HMF have been recently generalized to ''pairwise'' Markov fields (PMF), which offer similar processing advantages and superior modeling capabilities. In PMF one directly assumes the Markovianity of the pair (X, Y). Afterwards, ''triplet'' Markov fields (TMF), in which the distribution of the pair (X, Y) is the marginal distribution of a Markov field (X, U, Y), where U is an auxiliary process, have been proposed and still allow restoration processing. The aim of this paper is to propose a new parameter estimation method adapted to TMF, and to study the corresponding unsupervised image segmentation methods. The latter are validated via experiments and real image processing.
Abstract-We consider a general triplet Markov Gaussian linear system (X, R, Y), where X is an hidden continuous random sequence, R is an hidden discrete Markov chain, Y is an observed continuous random sequence. When the triplet (X, R, Y) is a classical "Conditionally Gaussian Linear State-Space Model" (CGLSSM), the mean square error optimal filter is not workable with a reasonable complexity and different approximate methods, e.g. based on particle filters, are used. We propose two contributions. The first one is to extend the CGLSSM to a new, more general model, called the "Conditionally Gaussian Pairwise Markov Switching Model" (CGPMSM), in which X is not necessarily Markov given R. The second contribution is to consider a particular case of CGPMSM in which (R, Y) is Markov and in which an exact filter, optimal in the sense of mean square error, can be performed with linear-time complexity. Some experiments show that the proposed method and the suited particle filter have comparable efficiency, while the second one is much faster.Index Terms-Conditionally Gaussian linear state-space model, conditionally Gaussian pairwise markov switching model, exact optimal filtering, Gaussian switching system, hidden Markov models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.