IMPORTANCE Early in-bed cycling and electrical muscle stimulation may improve the benefits of rehabilitation in patients in the intensive care unit (ICU). OBJECTIVE To investigate whether early in-bed leg cycling plus electrical stimulation of the quadriceps muscles added to standardized early rehabilitation would result in greater muscle strength at discharge from the ICU. DESIGN, SETTING, AND PARTICIPANTS Single-center, randomized clinical trial enrolling critically ill adult patients at 1 ICU within an 1100-bed hospital in France. Enrollment lasted from July 2014 to June 2016 and there was a 6-month follow-up, which ended on November 24, 2016. INTERVENTIONS Patients were randomized to early in-bed leg cycling plus electrical stimulation of the quadriceps muscles added to standardized early rehabilitation (n = 159) or standardized early rehabilitation alone (usual care) (n = 155). MAIN OUTCOMES AND MEASURES The primary outcome was muscle strength at discharge from the ICU assessed by physiotherapists blinded to treatment group using the Medical Research Council grading system (score range, 0-60 points; a higher score reflects better muscle strength; minimal clinically important difference of 4 points). Secondary outcomes at ICU discharge included the number of ventilator-free days and ICU Mobility Scale score (range, 0-10; a higher score reflects better walking capability). Functional autonomy and health-related quality of life were assessed at 6 months. RESULTS Among 314 randomized patients, 312 (mean age, 66 years; women, 36%; receiving mechanical ventilation at study inclusion, 78%) completed the study and were included in the analysis. The median global Medical Research Council score at ICU discharge was 48 (interquartile range [IQR], 29 to 58) in the intervention group and 51 (IQR, 37 to 58) in the usual care group (median difference, −3.0 [95% CI, −7.0 to 2.8]; P = .28). The ICU Mobility Scale score at ICU discharge was 6 (IQR, 3 to 9) in both groups (median difference, 0 [95% CI, −1 to 2]; P = .52). The median number of ventilator-free days at day 28 was 21 (IQR, 6 to 25) in the intervention group and 22 (IQR, 10 to 25) in the usual care group (median difference, 1 [95% CI, −2 to 3]; P = .24). Clinically significant events occurred during mobilization sessions in 7 patients (4.4%) in the intervention group and in 9 patients (5.8%) in the usual care group. There were no significant between-group differences in the outcomes assessed at 6 months. CONCLUSIONS AND RELEVANCE In this single-center randomized clinical trial involving patients admitted to the ICU, adding early in-bed leg cycling exercises and electrical stimulation of the quadriceps muscles to a standardized early rehabilitation program did not improve global muscle strength at discharge from the ICU.
IntroductionPulse pressure variation (PPV) has been shown to predict fluid responsiveness in ventilated intensive care unit (ICU) patients. The present study was aimed at assessing the diagnostic accuracy of PPV for prediction of fluid responsiveness by using the grey zone approach in a large population.MethodsThe study pooled data of 556 patients from nine French ICUs. Hemodynamic (PPV, central venous pressure (CVP) and cardiac output) and ventilator variables were recorded. Responders were defined as patients increasing their stroke volume more than or equal to 15% after fluid challenge. The receiver operating characteristic (ROC) curve and grey zone were defined for PPV. The grey zone was evaluated according to the risk of fluid infusion in hypoxemic patients.ResultsFluid challenge led to increased stroke volume more than or equal to 15% in 267 patients (48%). The areas under the ROC curve of PPV and CVP were 0.73 (95% confidence interval (CI): 0.68 to 0.77) and 0.64 (95% CI 0.59 to 0.70), respectively (P <0.001). A grey zone of 4 to 17% (62% of patients) was found for PPV. A tidal volume more than or equal to 8 ml.kg−1 and a driving pressure (plateau pressure - PEEP) more than 20 cmH2O significantly improved the area under the ROC curve for PPV. When taking into account the risk of fluid infusion, the grey zone for PPV was 2 to 13%.ConclusionsIn ventilated ICU patients, PPV values between 4 and 17%, encountered in 62% patients exhibiting validity prerequisites, did not predict fluid responsiveness.
IntroductionBecause of disturbed renal autoregulation, patients experiencing hypotension-induced renal insult might need higher levels of mean arterial pressure (MAP) than the 65 mmHg recommended level in order to avoid the progression of acute kidney insufficiency (AKI).MethodsIn 217 patients with sustained hypotension, enrolled and followed prospectively, we compared the evolution of the mean arterial pressure (MAP) during the first 24 hours between patients who will show AKI 72 hours after inclusion (AKIh72) and patients who will not. AKIh72 was defined as the need of renal replacement therapy or "Injury" or "Failure" classes of the 5-stage RIFLE classification (Risk, Injury, Failure, Loss of kidney function, End-stage renal disease) for acute kidney insufficiency using the creatinine and urine output criteria. This comparison was performed in four different subgroups of patients according to the presence or not of AKI at the sixth hour after inclusion (AKIh6 as defined as a serum creatinine level above 1.5 times baseline value within the first six hours) and the presence or not of septic shock at inclusion.The ability of MAP averaged over H6 to H24 to predict AKIh72 was assessed by the area under the receiver operating characteristic curve (AUC) and compared between groups.ResultsThe MAP averaged over H6 to H24 or over H12 to H24 was significantly lower in patients who showed AKIh72 than in those who did not, only in septic shock patients with AKIh6, whereas no link was found between MAP and AKIh72 in the three others subgroups of patients. In patients with septic shock plus AKIh6, MAP averaged over H6 to H24 or over H12 to H24 had an AUC of 0.83 (0.72 to 0.92) or 0.84 (0.72 to 0.92), respectively, to predict AKIh72 . In these patients, the best level of MAP to prevent AKIh72 was between 72 and 82 mmHg.ConclusionsMAP about 72 to 82 mmHg could be necessary to avoid acute kidney insufficiency in patients with septic shock and initial renal function impairment.
IntroductionFluid responsiveness prediction is of utmost interest during acute respiratory distress syndrome (ARDS), but the performance of respiratory pulse pressure variation (ΔRESPPP) has scarcely been reported. In patients with ARDS, the pathophysiology of ΔRESPPP may differ from that of healthy lungs because of low tidal volume (Vt), high respiratory rate, decreased lung and sometimes chest wall compliance, which increase alveolar and/or pleural pressure. We aimed to assess ΔRESPPP in a large ARDS population.MethodsOur study population of nonarrhythmic ARDS patients without inspiratory effort were considered responders if their cardiac output increased by >10% after 500-ml volume expansion.ResultsAmong the 65 included patients (26 responders), the area under the receiver-operating curve (AUC) for ΔRESPPP was 0.75 (95% confidence interval (CI95): 0.62 to 0.85), and a best cutoff of 5% yielded positive and negative likelihood ratios of 4.8 (CI95: 3.6 to 6.2) and 0.32 (CI95: 0.1 to 0.8), respectively. Adjusting ΔRESPPP for Vt, airway driving pressure or respiratory variations in pulmonary artery occlusion pressure (ΔPAOP), a surrogate for pleural pressure variations, in 33 Swan-Ganz catheter carriers did not markedly improve its predictive performance. In patients with ΔPAOP above its median value (4 mmHg), AUC for ΔRESPPP was 1 (CI95: 0.73 to 1) as compared with 0.79 (CI95: 0.52 to 0.94) otherwise (P = 0.07). A 300-ml volume expansion induced a ≥2 mmHg increase of central venous pressure, suggesting a change in cardiac preload, in 40 patients, but none of the 28 of 40 nonresponders responded to an additional 200-ml volume expansion.ConclusionsDuring protective mechanical ventilation for early ARDS, partly because of insufficient changes in pleural pressure, ΔRESPPP performance was poor. Careful fluid challenges may be a safe alternative.
A PLR-induced change in CVP > or =2 mmHg was required to allow clinical usefulness of PLR-derived indices. In this situation, Delta(PLR)PP performed well for predicting fluid responsiveness in deeply sedated patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.