BackgroundTo assess whether SARS-CoV-2 infection may affect the central nervous system, specifically neurons and glia cells, even without clinical neurological involvement.MethodsIn this single centre prospective study, serum levels of neurofilament light chain (sNfL) and glial fibrillar acidic protein (sGFAp) were assessed using SimoaTM assay Neurology 2-Plex B Assay Kit, in 148 hospitalised patients with COVID-19 without clinical neurological manifestations and compared them to 53 patients with interstitial pulmonary fibrosis (IPF) and 108 healthy controls (HCs).ResultsAge and sex-corrected sNfL levels were higher in patients with COVID-19 (median log10-sNfL 1.41; IQR 1.04–1.83) than patients with IPF (median log10-sNfL 1.18; IQR 0.98–1.38; p<0.001) and HCs (median log10-sNfL 0.89; IQR 0.72–1.14; p<0.001). Likewise, age and sex-corrected sGFAP levels were higher in patients with COVID-19 (median log10-sGFAP 2.26; IQR 2.02–2.53) in comparison with patients with IPF (median log10-sGFAP 2.15; IQR 1.94–2.30; p<0.001) and HCs (median log10-sGFAP 1.87; IQR 0.64–2.09; p<0.001). No significant difference was found between patients with HCs and IPF (p=0.388 for sNfL and p=0.251 for sGFAp). In patients with COVID-19, a prognostic model with mortality as dependent variable (26/148 patients died during hospitalisation) and sNfl, sGFAp and age as independent variables, showed an area under curve of 0.72 (95% CI 0.59 to 0.84; negative predictive value (NPV) (%):80,positive predictive value (PPV)(%): 84; p=0.0008).ConclusionThe results of our study suggest that neuronal and glial degeneration can occur in patients with COVID-19 regardless of overt clinical neurological manifestations. With age, levels of sNfl and GFAp can predict in-hospital COVID-19-associated mortality and might be useful to assess COVID-19 patient prognostic profile.
Severe acute respiratory syndrome caused by coronavirus 2 emerged in Wuhan (China) in December 2019 and has severely challenged the human population. NK and T cells are involved in the progression of COVID-19 infection through the ability of NK cells to modulate T-cell responses, and by the stimulation of cytokine release. No detailed investigation of the NK cell landscape in clinical SARS-CoV-2 infection has yet been reported. A total of 35 COVID-19 hospitalised patients were stratified for clinical severity and 17 healthy subjects were enrolled. NK cell subsets and T cell subsets were analysed with flow cytometry. Serum cytokines were detected with a bead-based multiplex assay. Fewer CD56dimCD16brightNKG2A+NK cells and a parallel increase in the CD56+CD69+NK, CD56+PD-1+NK, CD56+NKp44+NK subset were reported in COVID-19 than HC. A significantly higher adaptive/memory-like NK cell frequency in patients with severe disease than in those with mild and moderate phenotypes were reported. Moreover, adaptive/memory-like NK cell frequencies were significantly higher in patients who died than in survivors. Severe COVID-19 patients showed higher serum concentrations of IL-6 than mild and control groups. Direct correlation emerged for IL-6 and adaptive/memory-like NK. All these findings provide new insights into the immune response of patients with COVID-19. In particular, they demonstrate activation of NK through overexpression of CD69 and CD25 and show that PD-1 inhibitory signalling maintains an exhausted phenotype in NK cells. These results suggest that adaptive/memory-like NK cells could be the basis of promising targeted therapy for future viral infections.
(1) Background: Sarcoidosis is a chronic multisystem disorder of unknown aetiology, driven by a T-cell mechanism allowing T-cell attachment and transmigration through the endothelium, and endorsed by the expression of an integrin alpha-E beta-7 (CD103). This study aimed to analyse the different distribution and compartmentalisation of CD103 expression on T cell subsets in BAL, peripheral blood mononuclear cells (PBMC) and lymph nodes (LLN) from sarcoidosis patients. (2) Patients: We consecutively and prospectively enrolled 14 sarcoidosis patients. We collected PBMC, LLN and BAL at the same time from all patients. Through flow cytometric analysis, we analysed the expression of CD103 on regulatory and follicular T cell subsets. (3) Results: All patients were in radiological Scadding stage II. The multivariate analysis found that the variables which most influenced the peripheral blood compartment were high CD8+ and low ThReg, CD8+CD103+ and Tfh cell percentages. A principal component analysis plot performed to distinguish LLN, BAL and PBMC showed that they separated on the basis of CD4+, CD4+CD103+, CD8+, CD8+CD103+, TcEffector, TcNaive, ThNaive, ThEffector, Threg, ThregCD103+, Tfh, TcfCXC5+ and CD4+CD103+/CD4+ with 65.96% of the total variance. (4) Conclusions: Our study is the first to report a link between the imbalance in circulating, alveolar and lymph node CD8+ and CD8+CD103+ T cells, ThReg, Tfh and ThNaive and the CD103+CD4+/CD4+ T cell ratio in the development of sarcoidosis. These findings shine a spotlight on the pathogenesis of sarcoidosis and may offer new predictors for diagnosis. Our study provides additional understanding for a personalised, and hopefully more effective treatment of sarcoidosis.
Background Sarcoidosis features non-necrotizing granulomas consisting mainly of activated CD4-lymphocytes. T-cell activation is regulated by immune checkpoint (IC) molecules. The present study aimed to compare IC expression on CD4, CD8 and NK cells from peripheral, alveolar and lung-draining lymph node (LLN) samples of sarcoidosis patients. Methods Flow-cytometry analysis was performed to detect IC molecules and a regression decision tree model was constructed to investigate potential binary classifiers for sarcoidosis diagnosis as well as for the IC distribution. Results Fourteen patients (7 females) were consecutively recruited in the study; all enrolled patients showed hilo-mediastinal lymph node enlargement and lung parenchyma involvement with chest X-rays and high resolution computed tomography. CD4+PD1+ and CD8+PD1+ were higher in bronchoalveolar lavage (BAL) than in LLN (p = 0.0159 and p = 0.0439, respectively). CD4+ T-cell immunoglobulin and ITIM domain (TIGIT)+ were higher in BAL than in peripheral blood mononuclear cells (PBMCs) (p = 0.0239), while CD8+TIGIT+ were higher in PBMC than in BAL (p = 0.0386). CD56+TIGIT+ were higher in LLN than in PBMC (p = 0.0126). The decision-tree model showed the best clustering cells of PBMC, BAL and LLN: CD56, CD4/CD8 and CD4+TIGIT+ cells. Considering patients and controls, the best subset was CD4+CTLA-4+. Conclusion High expression of PD1 and TIGIT on T cells in BAL, as well as CTLA-4 and TIGIT on T cells in LLN, suggest that inhibition of these molecules could be a therapeutic strategy for avoiding the development of chronic inflammation and tissue damage in sarcoidosis patients. Miriana d'Alessandro & Laura Bergantini contributed equally to the study.
Introduction: Cytomegalovirus (CMV) is the leading opportunistic infection in lung transplant (LTx) recipients. CMV is associated with graft failure and decreased survival. Recently, new antiviral therapies have been proposed. The present study aimed to investigate NK and T cell subsets of patients awaiting LTx. We analyzed the cellular populations between reactive and non-reactive QuantiFERON (QF) CMV patients for the prediction of immunological response to infection. Methods: Seventeen pre-LTx patients and 15 healthy controls (HC) have been enrolled. QF and IFN-γ ELISA assay detections were applied. NK cell subsets and T cell and proliferation assay were detected before and after stimulation with pp-65 and IE-1 CMV antigens after stratification as QF+ and QF−. Furthermore, we quantified the serum concentrations of NK− and T-related cytokines by bead-based multiplex analysis. Results: CD56brCD16lowNKG2A+KIR+ resulted in the best discriminatory cellular subsets between pre-LTx and HC. Discrepancies emerged between serology and QF assay. Better proliferative capability emerged from patients who were QF+, in particular in CD8 and CD25-activated cells. CD56brCD16low, adaptive/memory-like NK and CD8Teff were highly increased only in QF+ patients. Conclusions: QF more than serology is useful in the detection of patients able to respond to viral infection. This study provides new insights in terms of immunological responses to CMV in pre-LTX patients, particularly in NK and T cells biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.