The properties and photochemical and photophysical behavior of the mycosporine-like amino acids (MAAs) shinorine and porphyra-334 were experimentally evaluated in solutions of direct ionic micelles as simple biomimicking environments. The preferential partition of the natural molecules in the aqueous phase of sodium dodecyl sulfate (SDS) or cetyltrimethylammonium chloride (CTAC) micellar systems is confirmed. Although the proton dissociation of the carboxylic groups in the MAAs is slightly inhibited in CTAC solutions, the molecules are predicted to be in the form of zwitterions in all the explored media around physiological pH. The increase in the fluorescence quantum yield, emission lifetime and stationary anisotropy in the presence of CTAC micelles suggest electrostatic attractions of the MAAs with the surface of the cationic micelles. Consistently, the triplet-triplet absorption spectra in CTAC solutions reveal the typical environmental features of the micellar interface, while in the presence of SDS they are similar to those determined in neat water. Finally, the photostability of the MAAs increases in the micellar systems, more noticeably in the case of CTAC. It is concluded that the ability of the two MAAs to act as UV screens is susceptible to the influence of electrostatic interactions with organized microheterogeneous environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.