Intercellular adhesion molecule-1 (ICAM-1) is a cell surface glycoprotein that belongs to immunoglobulin superfamily and plays an important role in tumor cell expansion or metastasis. However, the detailed mechanisms of ICAM-1 in breast cancer remain unclear. In this study, we evaluated the expression level of ICAM-1 in breast cancer using tissue microarray and clinical tissue specimens by immunohistochemical method, and the results revealed that ICAM-1 is highly expressed in the breast cancer tissues. To investigate whether ICAM-1 can affect the metastasis ability in breast cancer, we knocked down ICAM-1 expression in breast cancer cell line MCF-7 by using lentivirus-mediated RNA interference (RNAi). As a result, we stably silenced ICAM-1 expression in MCF-7 cells by infection with lentivirus expressing green fluorescent protein (GFP), the change of metastatic ability of MCF-7 cells was assessed by wound-healing assay, Transwell assay or clone formation assay. Our results showed that silencing of ICAM-1 can inhibit the metastatic ability of MCF-7 cell lines in vitro significantly, and the decreased migration and invasion was accompanied by a reduction of MMP-14. These results implying that ICAM-1 might be involved in the progression of breast cancer metastasis and lentivirus-mediated silencing of ICAM-1 might be a potential therapeutic approach for the treatment of breast cancer.
Breast cancer suppressor candidate-1 (BCSC-1) is a candidate tumor suppressor gene that was identified recently. Decreased levels of BCSC-1 have been detected in a variety of cancer types in previous studies. Matrix metalloproteinase (MMP)-14 is a membrane-type MMP that plays an important role in tumor progression and prognosis. Previous research has indicated that MMP-14 is highly expressed in different cancer types and promotes tumor invasion or metastasis by remodeling the extracellular matrix. However, there have been few reports on BCSC-1 and MMP-14 in human breast cancer in recent years. In the present study, the association of BCSC-1 and MMP-14 with human breast cancer was investigated. The immunohistochemical analysis results revealed reduced expression of BCSC-1 and overexpression of MMP-14 in breast cancer tissues compared with adjacent normal breast tissues. Quantitative polymerase chain reaction and western blot analyses also showed that BCSC-1 was expressed at significantly lower levels, and that MMP-14 was expressed at significantly higher levels in breast cancer tissues compared with healthy breast tissue. Furthermore, decreased expression of BCSC-1 and overexpression of MMP-14 were associated with tumor cellular differentiation, lymph node metastasis and distant metastasis. A correlational analysis between BCSC-1 and MMP-14 was also conducted, and the results indicated a negative correlation between the two. In conclusion, the current findings indicate that BCSC-1 is downregulated, while MMP-14 is overexpressed in human breast cancer. These two genes may play important roles during the process of human breast cancer development.
Food allergies (FAs) affect about 2%-8% of the world's population. FA clinical symptoms vary from slight abdominal discomfort to life-threatening anaphylactic shock. 1 The basic FA pathological changes are Th2 polarization-related inflammation, including the over production of antigen (Ag)-specific IgE, Th2 cytokines (eg interleukin [IL]-4, IL-5 and IL-13), profound infiltration of eosinophils and mast cells in tissues. 2 Th2 cytokines, especially IL-4, induce plasma cells to produce IgE. IgE binds to the high-affinity IgE receptors on the surface Abstract Background: The on-purpose-modulated dendritic cells (DCs) have shown charming effects on restoring immune regulatory functions in subjects with immune diseases. Objective: This study aims to construct DCs carrying chimerical antigen (Ag) peptides (CAP-DCs) to induce interleukin (IL)-17+ inducible Tregs (iTregs) to alleviate food allergy (FA) in a murine model. Methods: In this study, we constructed CAP-DCs. The CAP is a fusion protein, consisting of a segment of recombinant scFv of anti-DEC205 antibody and an ovalbumin (OVA) epitope (IC). A murine OVA-FA model was developed to test the effects of CAP-DCs on suppressing the allergic response in the intestine. Results: The CAP-DCs are characterized as that a complex of scFv-IC is presented on the surface of the cells, moderately express CD80 and CD86 as well as IL-6, IL-23, transforming growth factor (TGF)-β and CCR9. After being passively transferred with CAP-DCs or injection of scFv-IC, Ag-specific IL-17+ Foxp3+ iTregs were induced in the intestinal lamina propria of FA mice. The iTregs showed immune suppressive effects on Ag-specific Th2 response. FA mice were adoptively transferred with the CAP-DCs or scFv-IC injection, which resulted in a significant decrease in the number of Ag-specific Th2 cells and suppression of FA response in an Ag-specific manner. Conclusions and Clinical Relevance: CAP-DCs can ameliorate FA response by inducing Ag-specific IL-17+ Foxp3+ iTregs and suppressing Ag-specific Th2 response. To generate CAP-DCs has the translational potential in the treatment of FA. K E Y W O R D S dendritic cell, epitope, food allergy, immune regulation, immunotherapy
Breast cancer suppressor candidate-1 (BCSC-1; also termed von Willebrand factor A domain containing 5A and LOH11CR2A) is a newly identified candidate tumor suppressor gene that has been implicated in several types of cancer in previous studies. However, there have been few reports about the association between BCSC-1 and human breast cancer in recent years. In the present study, the expression of BCSC-1 in breast cancer was determined by immunohistochemistry (IHC) staining of tissue microarrays and clinical tissue specimens. Subsequently, BCSC-1 gene expression was evaluated in different breast cancer cell lines by quantitative polymerase chain reaction and the MDA-MB-231 cell line was selected for further use in subsequent experiments, due to its low BCSC-1 expression. An MDA-MB-231 cell line with stable overexpression of BCSC-1 was established through transfection with plasmid containing the BCSC-1 gene, and then screening for G418 resistance. Wound-healing, migration and invasion assays were conducted to detect the effect of BCSC-1 on MDA-MB-231 cells. Furthermore, changes in matrix metalloproteinases (MMPs), osteopontin (OPN) and the nuclear factor-κB (NF-κB) pathway were detected in the current study. Additionally, stable silencing of BCSC-1 expression in MCF-7 cells was performed using a lentivirus. The results of IHC indicated that BCSC-1 is expressed at low levels in breast cancer tissues compared with in normal breast tissue. Results of the wound healing, migration and invasion assays demonstrated that BCSC-1 overexpression reduced the metastasis ability of MDA-MB-231 cells in vitro. Further research confirmed that the BCSC-1 overexpression reduced the expression levels of MMP7, MMP9 and OPN, and the phosphorylation of NF-κB p65. Furthermore, inhibition of BCSC-1 via lentivirus-mediated RNA interference revealed that the downregulation of BCSC-1 increased the invasive ability of MCF-7 cells. In summary, the results demonstrated that BCSC-1 is expressed at low levels in breast cancer tissues, and that it can suppress human breast cancer cell migration and invasion, potentially altering the expression of MMP7, MMP9, OPN, and the activity of the NF-κB pathway. Therefore, BCSC-1 may be useful as a biomarker for the treatment of breast cancer in the future.
Chimeric antigen receptor T (CAR-T) cells are a type of tumor immunotherapy that is a breakthrough technology in the clinical treatment of tumors. The basic principle of this method is to extract the patient's T cells and equip them with targeting recognition receptors of tumor cells and return them to the patient's body to recognize and kill tumor cells specifically. Most CAR-T cell therapies treat hematological diseases such as leukemia or lymphoma and achieved encouraging results. The safety and effectiveness of CAR-T cell technology in solid tumor treatment require to be improved, although it has demonstrated promising efficacy in treating hematological malignancies. It is worth noting that certain patients may experience fatal adverse reactions after receiving CAR-T cell therapy. At present, the difficulty of this therapy mainly lies in how to reduce adverse reactions and target escape effects during the course of treatment. The improvement of CAR-T cell therapy mainly focuses on improving CAR-T structure, finding suitable tumor targets and combining them with immune checkpoint inhibitors to the enhance efficacy and safety of treatment. The problems in the rapid development of CAR-T cell therapy provide both obstacles and opportunities. The present review elaborates on the clinical application of CAR-T cell technology to provide a reference for clinical practice and research on tumor treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.