Typhoid fever is endemic across sub-Saharan Africa. However, estimates of the burden of typhoid are undermined by insufficient blood volumes and lack of sensitivity of blood culture. Here, we aimed to address this limitation by exploiting pre-enrichment culture followed by PCR, alongside routine blood culture to improve typhoid case detection. We carried out a prospective diagnostic cohort study and enrolled children (aged 0–4 years) with non-specific febrile disease admitted to a tertiary hospital in Blantyre, Malawi from August 2014 to July 2016. Blood was collected for culture (BC) and real-time PCR after a pre-enrichment culture in tryptone soy broth and ox-bile. DNA was subjected to PCR for invA (Pan- Salmonella ), staG ( S . Typhi), and fliC ( S . Typhimurium) genes. A positive PCR was defined as invA plus either staG or fliC (CT<29). IgM and IgG ELISA against four S . Typhi antigens was also performed. In total, 643 children (median age 1.3 years) with nonspecific febrile disease were enrolled; 31 (4.8%) were BC positive for Salmonella (n = 13 S . Typhi, n = 16 S . Typhimurium, and n = 2 S . Enteritidis). Pre-enrichment culture of blood followed by PCR identified a further 8 S . Typhi and 15 S . Typhimurium positive children. IgM and IgG titres to the S. Typhi antigen STY1498 (haemolysin) were significantly higher in children that were PCR positive but blood culture negative compared to febrile children with all other non-typhoid illnesses. The addition of pre-enrichment culture and PCR increased the case ascertainment of invasive Salmonella disease in children by 62–94%. These data support recent burden estimates that highlight the insensitivity of blood cultures and support the targeting of pre-school children for typhoid vaccine prevention in Africa. Blood culture with real-time PCR following pre-enrichment should be used to further refine estimates of vaccine effectiveness in typhoid vaccine trials.
Context: Primary hyperparathyroidism (PHPT) is commonly associated with reduced bone mineral density (BMD) presenting with osteoporosis, increasing the risk of bone fragility fractures in these patients. Bisphosphonates, due to their anti-resorptive action, are known to improve the BMD and reduce the risk of bone fragility fractures. Therefore, bisphosphonates are considered as an alternative to surgical treatment in managing osteoporosis in PHPT patients. Aim: The aim of this observational study was to assess the effect of long term bisphosphonate therapy on BMD, bone fragility fracture and biochemical markers of bone metabolism in patients with PHPT. Methodology: Fifty patients (mean age 74 years) with PHPT who were treated with long term bisphosphonate therapy were studied retrospectively. The mean baseline (before commencing bisphosphonate therapy) BMD T-scores for lumbar spine (L2-L4) and left femoral neck were −2.5 and −2.1, respectively. Fourteen patients had bone fragility fractures before initiation of bisphosphonate therapy. Results: After an average of 5 years of bisphosphonate treatment, there was a significant increase in lumbar BMD T-score (−2.5 to −2.1, p = 0.013) and a non-significant change in left femoral neck BMD T-score (−2.1 to −2.2, p = 0.497). There was no increase in bone fragility fracture rate (p = 0.167). Serum corrected calcium reduced from 2.74 mmol/L to 2.60 mmol/L (p < 0.001) and urine calcium to creatinine ratio from 0.70 to 0.55 (p < 0.0001), both within the reference range. Conclusions: Our study suggests that long term bisphosphonate therapy improves lumbar BMD and prevents increase in bone fragility fracture rate. Additionally it improves hypercalcaemia in PHPT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.