Purification schemes for antibody production based on affinity chromatography are trying to keep pace with increases in cell culture expression levels and many current research initiatives are focused on finding alternatives to chromatography for the purification of Monoclonal antibodies (MAbs). In this article, we have investigated an alternative separation technique based on liquid-liquid extraction called the reverse micellar extraction. We extracted MAb (IgG1) using reverse micelles of an anionic surfactant, sodium bis 2-ethyl-hexyl sulfosuccinate (AOT) and a combination of anionic (AOT) and nonionic surfactants (Brij-30, Tween-85, Span-85) using isooctane as the solvent system. The extraction efficiency of IgG1 was studied by varying parameters, such as pH of the aqueous phase, cation concentration, and type and surfactant concentration. Using the AOT/Isooctane reverse micellar system, we could achieve good overall extraction of IgG1 (between 80 and 90%), but only 30% of the bioactivity of IgG1 could be recovered at the end of the extraction by using its binding to affinity chromatography columns as a surrogate measure of activity. As anionic surfactants were suspected as being one of the reasons for the reduced activity, we decided to combine a nonionic surfactant with an anionic surfactant and then study its effect on the extraction efficiency and bioactivity. The best results were obtained using an AOT/Brij-30/Isooctane reverse micellar system, which gave an overall extraction above 90 and 59% overall activity recovery. An AOT/Tween-85/Isooctane reverse micellar system gave an overall extraction of between 75 and 80% and overall activity recovery of around 40-45%. The results showed that the activity recovery of IgG1 can be significantly enhanced using different surfactant combination systems, and if the recovery of IgG1 can be further enhanced, the technique shows considerable promise for the downstream purification of MAbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.