Field studies were conducted in 1997 and 1998 at Manhattan and Topeka, KS, to examine the competitive effects of redroot pigweed, Palmer amaranth, and common waterhemp on soybean yield. The experiments were established as a randomized complete block design in a factorial arrangement of three pigweed species, two pigweed planting dates (soybean planting and cotyledon stage), and seven weed densities (0.25, 0.5, 1, 2, 4, and 8 plants m−1 of row, plus a weed-free control). The effect of weed density on soybean yield loss, pigweed biomass, and pigweed seed production were described using a rectangular hyperbola model. Soybean yield loss varied between locations depending on the weed species, density, and time of emergence. Yield loss increased with weed density for each species and location with the first pigweed emergence time. The maximum soybean yield loss occurred at the first planting and 8 plants m−1 of row density, and was 78.7, 56.2, and 38.0% as determined by the model for Palmer amaranth, common waterhemp, and redroot pigweed, respectively. The second planting of pigweed did not significantly reduce soybean yield. The relative ranking of the pigweed species biomass was Palmer amaranth > common waterhemp > redroot pigweed. Maximum seed production for Palmer amaranth, common waterhemp, and redroot pigweed was 32,300, 51,800, and 9,500 seeds m−2. Palmer amaranth produced a larger quantity of seed than did common waterhemp or redroot pigweed at low weed densities (0.25 to 4 plants m−1 of row). But common waterhemp seed production equaled or surpassed Palmer amaranth at high weed densities.
Seeds of suspected herbicide-resistant Palmer amaranth and common waterhemp were collected in Clay County and Douglas County, KS, respectively. An experiment was established in a greenhouse to determine if these species had developed resistance to imazethapyr and thifensulfuron. Imazethapyr was applied pre- (PRE) and postemergence (POST) at 1×, 2×, 4×, and 8× the suggested use rate (70 g/ha), and thifensulfuron was applied POST at 1×, 2×, 4×, and 8× the suggested use rate (4.5 g/ha). Both species had developed resistance to all rates of these herbicides. The occurrence of resistance at the Clay County site (Palmer amaranth) fit the typical pattern for the development of herbicide resistance, i.e., multiple applications of the same class of herbicide for several years. However, the Douglas County (common waterhemp) site had a limited history of use of ALS-inhibiting herbicides and did not follow typical models of resistance development.
Resistance to protoporphyrinogen oxidase (protox)-inhibiting herbicides was identified in a population of common waterhemp that had been treated with acifluorfen for several years. The protox-resistant biotype of common waterhemp was approximately 34, 82, 8, and 4 times more resistant than a susceptible common waterhemp biotype to acifluorfen, lactofen, fomesafen, and sulfentrazone, respectively. The resistant biotype also showed a high level of resistance to acetolactate synthase–inhibiting herbicides thifensulfuron and imazethapyr but not to glyphosate or paraquat. An organophosphate insecticide was applied with acifluorfen or lactofen to determine if metabolism could be the mechanism of resistance. No differences were observed between resistant plants treated with an organophosphate plus a protox-inhibiting herbicide and plants treated with a protox-inhibiting herbicide alone.
Field research was conducted to evaluate the response of soybean to various herbicides applied at rates to simulate drift damage. Dicamba, glyphosate, glufosinate, and the sulfonylurea herbicides CGA-152005, primisulfuron, nicosulfuron, rimsulfuron plus thifensulfuron, and CGA-152005 plus primisulfuron were applied to soybean at the two to three trifoliolate leaf stage in 1997 and 1998 atand ⅓ of the recommended use rates. The order of yield reduction after herbicide treatment was CGA-152005 > dicamba > CGA-152005 plus primisulfuron > rimsulfuron plus thifensulfuron > primisulfuron. Soybean yields were not reduced by glyphosate, glufosinate, and nicosulfuron. Applications of all herbicides at rates higher thanof the use rate caused injury symptoms within 30 d after treatment. However, soybean plants had partially or fully recovered by the end of the growing season. Therefore, early-season injury symptoms from herbicide drift are not reliable indicators for soybean yield reduction.
Herbicides that inhibit hydroxyphenylpyruvate dioxygenase (HPPD) such as mesotrione are widely used to control a broad spectrum of weeds in agriculture. Amaranthus palmeri is an economically troublesome weed throughout the United States. The first case of evolution of resistance to HPPD-inhibiting herbicides in A. palmeri was documented in Kansas (KS) and later in Nebraska (NE). The objective of this study was to investigate the mechansim of HPPD-inhibitor (mesotrione) resistance in A. palmeri. Dose response analysis revealed that this population (KSR) was 10–18 times more resistant than their sensitive counterparts (MSS or KSS). Absorbtion and translocation analysis of [14C] mesotrione suggested that these mechanisms were not involved in the resistance in A. palmeri. Importantly, mesotrione (>90%) was detoxified markedly faster in the resistant populations (KSR and NER), within 24 hours after treatment (HAT) compared to sensitive plants (MSS, KSS, or NER). However, at 48 HAT all populations metabolized the mesotrione, suggesting additional factors may contribute to this resistance. Further evaluation of mesotrione-resistant A. palmeri did not reveal any specific resistance-conferring mutations nor amplification of HPPD gene, the molecular target of mesotrione. However, the resistant populations showed 4- to 12-fold increase in HPPD gene expression. This increase in HPPD transcript levels was accompanied by increased HPPD protein expression. The significant aspects of this research include: the mesotrione resistance in A. palmeri is conferred primarily by rapid detoxification (non-target-site based) of mesotrione; additionally, increased HPPD gene expression (target-site based) also contributes to the resistance mechanism in the evolution of herbicide resistance in this naturally occurring weed species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.