The purpose of this analysis was to describe medical chart reviewed musculoskeletal injuries among Naval Special Warfare Sea, Air, and Land Operators. 210 Operators volunteered (age: 28.1 ± 6.0 years, height: 1.8 ± 0.1 m, weight: 85.4 ± 9.3 kg). Musculoskeletal injury data were extracted from subjects' medical charts, and injuries that occurred during 1 year were described. Anatomic location of injury, cause of injury, activity when injury occurred, and injury type were described. The frequency of injuries was 0.025 per Operator per month. Most injuries involved the upper extremity (38.1% of injuries). Frequent anatomic sublocations for injuries were the shoulder (23.8%) and lumbopelvic region of the spine (12.7%). Lifting was the cause of 7.9% of injuries. Subjects were participating in training when 38.1% of injuries occurred and recreational activity/sports when 12.7% of injuries occurred. Frequent injury types were strain (20.6%), pain/spasm/ache (19.0%), fracture (11.1%), and sprain (11.1%). The results of this analysis underscore the need to investigate the risk factors, especially of upper extremity and physical activity related injuries, in this population of Operators. There is a scope for development of a focused, customized injury prevention program, targeting the unique injury profile of this population.
A high level of physical fitness is one important factor for optimal performance in Special Operation Forces (SOF). Still, information about physical training for SOF operators is not easily accessible. This study aimed to implement and assess a new training concept in the Norwegian Navy SOF. A longitudinal study where 22 operators completed a 6-month linear periodization (LP), followed by a 6-month nonlinear periodization (NLP) program. Both protocols were block periodized, focusing on either strength or aerobic capacity. A battery of tests covering strength, endurance, power, mobility, and body composition was performed, and individual capacity analyses were established. A training week consisted of 5 to 6 sessions including 1 or 2 individualized sessions directed towards improving the weakest capacity. The LP had a clear effect on mobility (19 ± 9%), abdominal strength (25 ± 16%), upper body power (PowerUB; 6 ± 9%), standing long-jump (3 ± 6%), pull-ups (24 ± 31%), agility (2 ± 4%), V[Combining Dot Above]O2max (2 ± 3%), fat percent (-5 ± 31%), and muscle mass (1 ± 3%). The NLP increased abdominal strength (15 ± 17%), standing long-jump (3 ± 4%), and anaerobic capacity (10 ± 8%), whereas V[Combining Dot Above]O2 max (-3 ± 4%) and PowerUB (-2 ± 7%) decreased. Additional analyses showed clear increases among those individually instructed to improve strength. Results support the benefits of combined periodized programming and individualized training sessions among SOF operators with initially good fitness levels. Largest effects were observed in the first phase with the LP. However, subsequent NLP additionally increased anaerobic and jumping capacity, possibly due to more frequent muscular endurance and power training. Because of frequent interruptions, the LP tended to be more difficult to follow than the NLP and is suggested when continuity is possible, whereas an NLP is recommended for maintenance and when standing on national preparedness.
Human performance training and prevention strategies are necessary to promote physical readiness and mitigate musculoskeletal injuries of the Naval Special Warfare (NSW) Operator. The purpose of this study was to measure the effectiveness of 2 training programs when performed during a training evolution of Operators. A total of 85 Operators (experimental: n = 46, age: 29.4 ± 5.5 years, height: 176.7 ± 6.4 cm, mass: 86.7 ± 11.6 kg; control: n = 39, age: 29.0 ± 6.0 years, height: 177.1 ± 6.3 cm, mass: 85.7 ± 12.5 kg) participated in a trial to measure the effectiveness of these programs to improve physical, physiological, and performance characteristics. Operators in the experimental group performed a 12-week block-periodized program, whereas those in the control group performed a nonlinear periodized program. Pretesting/posttesting was performed to assess body composition, aerobic capacity/lactate threshold, muscular strength, flexibility, landing biomechanics, postural stability, and tactically relevant performance. The experimental group demonstrated a significant loss in body fat, fat mass, and body mass compared with the control group, whereas aerobic capacity increased for the both groups. The experimental group demonstrated a significant increase in posterior shoulder flexibility and ankle dorsiflexion, whereas the control group had a significant reduction in shoulder, knee, and ankle flexibility. The experimental group also improved landing strategies and balance. Both groups improved upper and lower muscular power and upper-body muscular endurance, whereas only the experimental group demonstrated significant improvements in agility and total body muscular strength. Implementation of a population-specific training program provides structured and progressive training effectively and promotes physical readiness concurrently with tactical training without overload.
Background:Single-leg balance (SLB) can be chronically impaired after low back pain (LBP). Impaired SLB is a risk factor for recurrent LBP and lower extremity injury. In the United States military, the special forces operator (SFO) deploys on high-risk missions under extreme conditions, and impaired SLB can potentially threaten SFO safety and mission success.Purpose:To compare SLB in fully operational SFOs with and without a history of LBP. The hypothesis was that SLB deficits would be present in SFOs with a history of LBP.Study Design:Cross-sectional study; Level of evidence, 3.Methods:A total of 226 SFOs were included in this analysis. Comparisons were made between SFOs with and without medical chart documented history of LBP (LBP group [n = 43]: mean age = 31.2 ± 10.3 years, mean height = 177.3 ± 7.2 cm, mean mass = 87.3 ± 11.8 kg; healthy group [n = 183]: mean age = 28.0 ± 6.0 years, mean height = 177.9 ± 6.0 cm, mean mass = 84.9 ± 8.8 kg). Bilateral SLB was tested (eyes open and eyes closed) in both groups using a force plate. The variability in the ground-reaction forces was averaged across 3 trials for each leg for both conditions. Comparisons were made between legs in the LBP and between the LBP and healthy group (α = .05).Results:There were significant between-group differences for each leg for both conditions, with the healthy group demonstrating better SLB compared with the LBP group. P values ranged from .01 to .03.Conclusion:Impaired SLB persists in SFOs with previously reported LBP. Balance assessments of individuals who report LBP may assist with designing targeted interventions to address potential deficits that may increase the risk of future injury.Clinical Relevance:SFOs with a known history of LBP would benefit from examination of SLB and may benefit from balance training to resolve any deficits that may be present to lower the potential risk for future injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.