Varicella zoster virus (VZV) is a ubiquitous, human alphaherpesvirus that produces varicella on primary infection then becomes latent in ganglionic neurons along the entire neuraxis. In elderly and immunocompromised individuals, VZV reactivates and travels along nerve fibers peripherally resulting in zoster. However, VZV can also spread centrally and infect cerebral and extracranial arteries (VZV vasculopathy) to produce transient ischemic attacks, stroke, aneurysm, sinus thrombosis and giant cell arteritis, as well as granulomatous aortitis. The mechanisms of virus-induced pathological vascular remodeling are not fully elucidated; however, recent studies suggest that inflammation and dysregulation of programmed death ligand-1 play a significant role.
Varicella zoster virus (VZV) is a lymphotropic alpha-herpesvirinae subfamily member that produces varicella on primary infection and causes zoster, vascular disease and vision loss upon reactivation from latency. VZV-infected peripheral blood mononuclear cells (PBMCs) disseminate virus to distal organs to produce clinical disease. To assess immune evasion strategies elicited by VZV that may contribute to dissemination of infection, human PBMCs and VZV-specific CD8+ T cells (V-CD8+) were mock- or VZV-infected and analyzed for immunoinhibitory protein PD-1, PD-L1, PD-L2, CTLA-4, LAG-3 and TIM-3 expression using flow cytometry. All VZV-infected PBMCs (monocytes, NK, NKT, B cells, CD4+ and CD8+ T cells) and V-CD8+ showed significant elevations in PD-L1 expression compared to uninfected cells. VZV induced PD-L2 expression in B cells and V-CD8+. Only VZV-infected CD8+ T cells, NKT cells and V-CD8+ upregulated PD-1 expression, the immunoinhibitory receptor for PD-L1/PD-L2. VZV induced CTLA-4 expression only in V-CD8+ and no significant changes in LAG-3 or TIM-3 expression were observed in V-CD8+ or PBMC T cells. To test whether PD-L1, PD-L2 or CTLA-4 regulates V-CD8+ effector function, autologous PBMCs were VZV-infected and co-cultured with V-CD8+ cells in the presence of blocking antibodies against PD-L1, PD-L2 or CTLA-4; ELISAs revealed significant elevations in IFNγ only upon blocking of PD-L1. Together, these results identified additional immune cells that are permissive to VZV infection (monocytes, B cells and NKT cells); along with a novel mechanism for inhibiting CD8+ T cell effector function through induction of PD-L1 expression.
Objective:To test whether varicella zoster virus (VZV) infection of human brain vascular cells and of lung fibroblasts directly increases proinflammatory cytokine levels, consistent with VZV as a causative agent in intracerebral VZV vasculopathy and giant-cell arteritis (GCA).Methods:Conditioned supernatant from mock- and VZV-infected human brain vascular adventitial fibroblasts (HBVAFs), human perineurial cells (HPNCs), human brain vascular smooth muscle cells (HBVSMCs), and human fetal lung fibroblasts (HFLs) were collected at 72 hours postinfection and analyzed for levels of 30 proinflammatory cytokines using the Meso Scale Discovery Multiplex ELISA platform.Results:Compared with mock infection, VZV infection led to significantly increased levels of the following: interleukin-8 (IL-8) in all cell lines examined; IL-6 in HBVAFs, HPNCs, and HFLs, with no change in HBVSMCs; and vascular endothelial growth factor A in HBVAFs, HBVSMCs, and HFLs, with a significant decrease in HPNCs. Other cytokines, including IL-2, IL-4, IL-15, IL-16, TGF-b, Eotaxin-1, Eotaxin-3, IP-10, MCP-1, and granulocyte macrophage colony-stimulating factor, were also significantly altered upon VZV infection in a cell type–specific manner.Conclusions:VZV infection of vascular cells can directly produce a proinflammatory environment that may potentially lead to prolonged arterial wall inflammation and vasculitis. The VZV-mediated increase in IL-8 and IL-6 is consistent with that seen in the CSF of patients with intracerebral VZV vasculopathy, and the VZV-mediated increase in IL-6 is consistent with the cytokine's elevated levels in temporal arteries and plasma of patients with GCA.
Three relatively clear-cut diagnostic groups, namely primary major depressive disorder-endogenous subtype (PRI MDD-E), primary anxiety disorder with no depression (PRI ANX), and normal controls as well as two additional patient groups with mixed or coexisting anxious/depressive diagnoses were studied. Clinical assessment was made by routine psychiatric interview, Schedule of Affective Disorder and Schizophrenia (SADS) research interview, and obtaining family history of MDD. Subjects underwent both routine ‘baseline’ sleep EEG polygraphic arecoline, a muscarinic, cholinergic agonist infused during sleep. Cholinergic sensitivity was assessed by measuring the time to induction of REM sleep after arecoline infusion. In addition, a subgroup of MDD patients underwent pupillographic testing. Peripheral α-adrenergic responsivity was measured by the magnitude of pupillary mydriatic response after local ocular instillation of phenylephrine. Successful separation (83% correct classification) of the ‘pure’ groups (PRI MDD-E, PRI ANX, and normal) was achieved by discriminant function analysis of sleep EEG variables. Compared to PRI ANX and normal groups, patients with PRI MDD-E had supersensitive cholinergic REM-induction response, shorter REM latency, increased first REM density and REM percent. Separation of the PRI ANX and normal groups was by intermittent awake time, delta sleep percent, and total REM density. Classification of the mixed anxious/depressive groups was next attempted using the discriminant coefficients derived from the above analysis of ‘pure’ groups. We found that the presence of absence of family history of MDD in patients with mixed diagnosis offered the best prediction of classification into PRI MDD-E and PRI ANX groups, respectively. MDD patients with coexisting panic disorder were significantly subsensitive to phenylephrine -induced mydriasis compared to MDD patients without anxiety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.