The formation of interfacial midgap states due to the reduction of buckminsterfullerene (C60) to amorphous carbon upon subsequent vapor deposition of Al is confirmed using Raman spectroscopy and X-ray, ultraviolet, and inverse photoemission spectroscopies. We demonstrate that vapor deposition of Al results in n-type doping of C60 due to an electron transfer from Al to the LUMO of C60, resulting in the formation of midgap states near the C60 Fermi level. Raman spectroscopy in ultrahigh vacuum clearly identifies the presence of the C60 anion radical (C60(•-)) as well as amorphous carbon created by further degradation of C60(•-). In contrast, the interface formed by vapor deposition of Ag shows only a slight Ag/C60 interfacial charge displacement with no evidence for complete metal-to-C60 electron transfer to form the anion radical or its further degradation products. These results confirm previous speculations of metal-induced chemical damage of C60 films after Al deposition, which is widely suspected of decreasing charge collection efficiency in OPVs, and provide key insight into charge collection at metal/organic interfaces in such devices.
Synthetic details for 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.5.2]pentadecane, the dimethyl ethylene cross-bridged homocyclen ligand are presented for the first time. Its novel Mn(2+), Fe(2+), Mn(3+), and Fe(3+) complexes have been synthesized and characterized. X-ray crystal structures were obtained for both manganese complexes, along with five additional Co(3+), Cu(2+), and Zn(2+) structures, the first structural characterization of complexes of this ligand. Each complex has the cis-V configuration of the cross-bridged macrocycle ring, leaving cis labile binding sites for interaction of the complex with oxidants and/or substrates. The copper(II) complex kinetic stability in 5 M HCl and at elevated temperatures was determined and compared to related complexes in the literature. The electronic properties of the manganese and iron complexes were evaluated using solid state magnetic moment determination and acetonitrile solution electronic spectroscopy, revealing high spin metal complexes in all cases. Cyclic voltammetry in acetonitrile of the divalent iron and manganese complexes revealed reversible redox processes, suggesting catalytic reactivity involving electron transfer processes are possible for both complexes. Screening of the Mn(2+) and Fe(2+) complexes for oxidation catalysis using hydrogen peroxide as the terminal oxidant showed both complexes are worthy of continued development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.