Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.
The absorption of dietary flavonoid glycosides in humans involves a critical deglycosylation step that is mediated by epithelial beta-glucosidases (LPH and CBG). The significant variation in beta-glucosidase activity between individuals may be a factor determining variation in flavonoid bioavailability.
The enzyme lactase that is located in the villus enterocytes of the small intestine is responsible for digestion of lactose in milk. Lactase activity is high and vital during infancy, but in most mammals, including most humans, lactase activity declines after the weaning phase. In other healthy humans, lactase activity persists at a high level throughout adult life, enabling them to digest lactose as adults. This dominantly inherited genetic trait is known as lactase persistence. The distribution of these different lactase phenotypes in human populations is highly variable and is controlled by a polymorphic element cis-acting to the lactase gene. A putative causal nucleotide change has been identified and occurs on the background of a very extended haplotype that is frequent in Northern Europeans, where lactase persistence is frequent. This single nucleotide polymorphism is located 14 kb upstream from the start of transcription of lactase in an intron of the adjacent gene MCM6. This change does not, however, explain all the variation in lactase expression.
It has been known for some 40 years that lactase production persists into adult life in some people but not in others. However, the mechanism and evolutionary significance of this variation have proved more elusive, and continue to excite the interest of investigators from different disciplines. This genetically determined trait differs in frequency worldwide and is due to cis-acting polymorphism of regulation of lactase gene expression. A single nucleotide polymorphism located 13.9 kb upstream from the lactase gene (C-13910 > T) was proposed to be the cause, and the -13910*T allele, which is widespread in Europe was found to be located on a very extended haplotype of 500 kb or more. The long region of haplotype conservation reflects a recent origin, and this, together with high frequencies, is evidence of positive selection, but also means that -13910*T might be an associated marker, rather than being causal of lactase persistence itself. Doubt about function was increased when it was shown that the original SNP did not account for lactase persistence in most African populations. However, the recent discovery that there are several other SNPs associated with lactase persistence in close proximity (within 100 bp), and that they all reside in a piece of sequence that has enhancer function in vitro, does suggest that they may each be functional, and their occurrence on different haplotype backgrounds shows that several independent mutations led to lactase persistence. Here we provide access to a database of worldwide distributions of lactase persistence and of the C-13910*T allele, as well as reviewing lactase molecular and population genetics and the role of selection in determining present day distributions of the lactase persistence phenotype.
Niche construction is the process by which organisms construct important components of their local environment in ways that introduce novel selection pressures. Lactase persistence is one of the clearest examples of niche construction in humans. Lactase is the enzyme responsible for the digestion of the milk sugar lactose and its production decreases after the weaning phase in most mammals, including most humans. Some humans, however, continue to produce lactase throughout adulthood, a trait known as lactase persistence. In European populations, a single mutation (213910*T ) explains the distribution of the phenotype, whereas several mutations are associated with it in Africa and the Middle East. Current estimates for the age of lactase persistence-associated alleles bracket those for the origins of animal domestication and the culturally transmitted practice of dairying. We report new data on the distribution of 213910*T and summarize genetic studies on the diversity of lactase persistence worldwide. We review relevant archaeological data and describe three simulation studies that have shed light on the evolution of this trait in Europe. These studies illustrate how genetic and archaeological information can be integrated to bring new insights to the origins and spread of lactase persistence. Finally, we discuss possible improvements to these models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.