Unconventional superconductivity arising from the interplay between strong spin–orbit coupling and magnetism is an intensive area of research. One form of unconventional superconductivity arises when Cooper pairs subjected to a magnetic exchange coupling acquire a finite momentum. Here, we report on a signature of finite momentum Cooper pairing in the three-dimensional topological insulator Bi2Se3. We apply in-plane and out-of-plane magnetic fields to proximity-coupled Bi2Se3 and find that the in-plane field creates a spatially oscillating superconducting order parameter in the junction as evidenced by the emergence of an anomalous Fraunhofer pattern. We describe how the anomalous Fraunhofer patterns evolve for different device parameters, and we use this to understand the microscopic origin of the oscillating order parameter. The agreement between the experimental data and simulations shows that the finite momentum pairing originates from the coexistence of the Zeeman effect and Aharonov–Bohm flux.
The ferrimagnetic spinel CoV2O4 has been a topic of intense recent interest, both as a frustrated insulator with unquenched orbital degeneracy and as a near-itinerant magnet which can be driven metallic with moderate applied pressure. Here, we report on our recent neutron diffraction and inelastic scattering measurements on powders with minimal cation site disorder. Our main new result is the identification of a weak ( ∆a a ∼ 10 −4 ), first order structural phase transition at T * = 90 K, the same temperature where spin canting was seen in recent single crystal measurements. This transition is characterized by a short-range distortion of oxygen octahedral positions, and inelastic data further establish a weak ∆ ∼ 1.25meV spin gap at low temperature. Together, these findings provide strong support for the local orbital picture and the existence of an orbital glass state at temperatures below T * .
Quantum magnets with significant bond-directional Ising interactions, so-called Kitaev materials, have attracted tremendous attention recently in the search for exotic spin liquid states. Here we present a comprehensive set of measurements that enables us to investigate the crystal structures, Ir 4+ single ion properties, and magnetic ground states of the double perovskite iridates La2BIrO6 (B = Mg, Zn) and A2CeIrO6 (A = Ba, Sr) with a large nearest neighbor distance > 5Å between Ir 4+ ions. Our neutron powder diffraction data on Ba2CeIrO6 can be refined in the cubic space group Fm3m, while the other three systems are characterized by weak monoclinic structural distortions. Despite the variance in the non-cubic crystal field experienced by the Ir 4+ ions in these materials, X-ray absorption spectroscopy and resonant inelastic x-ray scattering are consistent with J eff = 1/2 moments in all cases. Furthermore, neutron scattering and resonant magnetic x-ray scattering show that these systems host A-type antiferromagnetic order. These electronic and magnetic ground states are consistent with expectations for face-centered-cubic magnets with significant antiferromagnetic Kitaev exchange, which indicates that spacing magnetic ions far apart may be a promising design principle for uncovering additional Kitaev materials.
We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi_{2}Se_{3} and Bi_{0.5}Sb_{1.5}Te_{3-x}Se_{x}. Our goal was to identify the "spin plasmon" predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface χ^{"}(q,ω) at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.