This review article summarizes recent applications of electrochemical techniques to redox-active drug development and mechanistic studies. It includes a general introduction to the use of electrochemistry in biology, with a focus on how electrochemistry can uniquely provide both kinetic and thermodynamic information. A number of studies are reported from the literature and the authors' laboratories, including the investigation of reactive oxygen species, biooxidative/bioreductive activation of pro-drugs, and DNA alkylation, with a particular emphasis on quinones and related compounds. Data from techniques ranging from traditional cyclic voltammetry to sophisticated single cell studies are presented. The examples herein presented illustrate how electrochemical, biochemical and medical knowledge can be integrated to develop strategies for the design and development of redox-selective therapeutics.
O presente trabalho de revisão aborda os mais recentes avanços na tecnologia de biossensores alcançados através da montagem de biomoléculas associada com nanopartículas de ouro na construção de dispositivos analíticos. Esta revisão está dividida de acordo com a biomolécula empregada no desenvolvimento de biossensores: (i) compostos imunológicos; (ii) DNA/RNA funcionais; e (iii) enzimas e proteínas Heme. A fim de facilitar a compreensão, cada seção foi subdividida de acordo com o modo de transdução. Os imunossensores contendo nanopartículas de ouro têm uma ampla gama de aplicações nos campos alimentício, ambiental, farmacêutico, químico e de diagnósticos clínicos. As nanopartículas foram empregadas para melhorar o sinal analítico ou a imobilização dos imunocompostos. Em outra seção, os biossensores DNA/ RNA empregando nanoestruturas de ouro como labels e biossensores label-free associados a nanoestruturas de ouro como transdutores foram sistematicamente relatados para a rápida identificação de patógenos, espécies de interesse ambiental e diagnóstico clínico. A inclusão de nanopartículas de ouro em eletrodos modificados aumenta a transferência de elétrons entre o transdutor e a biomolécula proporcionando um melhor desempenho quando enzimas e proteínas redox heme são usados. Biossensores para a detecção e quantificação de glicose e peróxido de hidrogênio foram também discutidos.The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles based immunosensors have a wide range of applications in food, environmental, pharmaceutical, chemistry and clinical diagnostics. The nanoparticles were employed to improve whether the analytical signal or the immunocompounds immobilization. In another section, biosensors based on DNA/RNA biomolecules employing gold nanostructures as labels and label-free funtional DNA/RNA biosensors associated to gold nanostructures as tranducers were systematically reported for rapid identification of pathogens, species of environmental interest and clinical diagnostics, respectively. The inclusion of gold nanoparticles in modified electrodes itself enhances the electron transfer between the transducer and biomolecules leading to improved bioanalytical devices when redox enzymes and heme proteins are used. Biosensors for the detection and quantification of glucose and hydrogen peroxide are discussed as well.
In this work we have applied quantum mechanical calculations, at the density functional theory level, to investigate the phosphate diester hydrolysis promoted by a cationic heterodinuclear Fe(III)...Zn(II) complex that mimics the structural and functional properties of the purple acid phosphatase (PAP) enzymes. The hydrolysis of the dimethyl phosphate diester was investigated in the gas phase and in solution by means of the continuum PCM model, using the B3LYP hybrid exchange-correlation functional. Our computed results showed that the hydrolysis of the dimethyl phosphate ester takes place in two steps. The first step corresponds to a slow P-O bond formation through nucleophilic attack of the coordinated (Fe(III))-OH group. The second step consists of a proton transfer process followed by the release of a methanol molecule. The first step is rate determining with activation free energy of 12.3 kcal mol(-1), which is about 3 times lower than the activation free energy for the uncatalyzed reaction. We also show that the heterodinuclear site plays an important role favoring an associative mechanism for the phosphate diester hydrolysis, favoring the formation of a high energy intermediate phosphorane, and orienting the phosphate group to the nucleophilic attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.