There has been a tremendous growth in the demand for software fault prediction during recent years. In this paper, Levenberg-Marquardt (LM) algorithm based neural network tool is used for the prediction of software defects at an early stage of the software development life cycle. It helps to minimize the cost of testing which minimizes the cost of the project. The methods, metrics and datasets are used to find the fault proneness of the software. The study used data collected from the PROMISE repository of empirical software engineering data. This dataset uses the CK (Chidamber and Kemerer) OO (object-oriented) metrics. The accuracy of Levenberg-Marquardt (LM) algorithm based neural network are comparing with the polynomial function-based neural network predictors for detection of software defects. Our results indicate that the prediction model has a high accuracy.
General TermsSoftware defect prediction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.