Cisplatin has been one of the most widely used anticancer agents, but its nephrotoxicity remains a dose-limiting complication. Here, we evaluated the idiopathic nature and the predose prediction of cisplatin-induced nephrotoxicity using a nuclear magnetic resonance (NMR)-based pharmacometabonomic approach. Cisplatin produced serious toxic responses in some animals (toxic group), but had little effect in others (nontoxic group), as judged by hematological and histological results. The individual metabolic profiles, assessed by urine NMR spectra, showed large differences between the post-administration profiles of the two groups, indicating the relevance of the NMR approach. Importantly, multivariate analysis of the NMR data showed that the toxic and nontoxic groups can be differentiated based on the pretreatment metabolite profiles. Leave-one-out analysis, performed to evaluate the practical performance of our approach, gave a 66% accuracy rate in predicting toxic responses based on the pretreatment metabolite profiles. Hence, we provide a working model that can explain the idiopathic toxicity mechanism based on marker metabolites found by NMR analysis consistent with tissue NADH measurements. Thus, a pharmacometabonomic approach using pretreatment metabolite profiles may help expedite personalized chemotherapy of anticancer drugs.
Brown adipose tissue (BAT) is a specialized thermoregulatory organ that has a critical role in the regulation of energy metabolism. Specifically, energy expenditure can be enhanced by the activation of BAT function and the induction of a BAT-like catabolic phenotype in white adipose tissue (WAT). Since the recent recognition of metabolically active BAT in adult humans, BAT has been extensively studied as one of the most promising targets identified for treating obesity and its related disorders. In this review, we summarize information on the developmental origin of BAT and the progenitors of brown adipocytes in WAT. We explore the transcriptional control of brown adipocyte differentiation during classical BAT development and in WAT browning. We also discuss the neuronal control of BAT activity and summarize the recently identified non-canonical stimulators of BAT that can act independently of β-adrenergic stimulation. Finally, we review new findings on the beneficial effects of BAT activation and development with respect to improving metabolic profiles. We highlight the therapeutic potential of BAT and its future prospects, including pharmacological intervention and cell-based therapies designed to enhance BAT activity and development.
The role of leptin in cutaneous wound healing process has been suggested in genetically obese mouse studies. However, the molecular and cellular effects of leptin on human epidermal keratinocytes are still unclear. In this study, the whole-genome-scale microarray analysis was performed to elucidate the effect of leptin on epidermal keratinocyte functions. In the leptin-treated normal human keratinocytes (NHKs), we identified the 151 upregulated and 53 downregulated differentially expressed genes (DEGs). The gene ontology (GO) enrichment analysis with the leptin-induced DEGs suggests that leptin regulates NHKs to promote pro-inflammatory responses, extracellular matrix organization, and angiogenesis. Among the DEGs, the protein expression of IL-8, MMP-1, fibronectin, and S100A7, which play roles in which is important in the regulation of cutaneous inflammation, was confirmed in the leptin-treated NHKs. The upregulation of the leptin-induced proteins is mainly regulated by the STAT3 signaling pathway in NHKs. Among the downregulated DEGs, the protein expression of nucleosome assembly-associated centromere protein A (CENPA) and CENPM was confirmed in the leptin-treated NHKs. However, the expression of CENPA and CENPM was not coupled with those of other chromosome passenger complex like Aurora A kinase, INCENP, and survivin. In cell growth kinetics analysis, leptin had no significant effect on the cell growth curves of NHKs in the normal growth factor-enriched condition. Therefore, leptin-dependent downregulation of CENPA and CENPM in NHKs may not be directly associated with mitotic regulation during inflammation.
Reducing sugar 2-deoxy-D-ribose (dRib) produces reactive oxygen species (ROS) through autoxidation and protein glycosylation and causes dysfunction of osteoblasts. In the present study, glabridin, a natural flavonoid, was investigated to determine whether it could influence dRib-induced oxidative damage and cellular dysfunction in the MC3T3-E1 mouse osteoblastic cell line. Osteoblastic cells were treated with dRib in the presence or absence of glabridin. Cell viability, apoptosis, ROS production and mitochondrial membrane potential (ΔΨm) were subsequently examined. It was observed that dRib reduced cell survival and ΔΨm, while it markedly increased intracellular levels of ROS and apoptosis. However, pretreatment of cells with glabridin attenuated all the dRib-induced effects. The antioxidant N-acetyl-L-cysteine (NAC) also prevented dRib-induced oxidative cell damage. In addition, treatment with glabridin resulted in a significant elevation of alkaline phosphatase (ALP) activity, collagen contents and osteoblast differentiation genes [ALP, collagen, osteopontin (OPN), osteoprotegerin (OPG) and osteocalcin (OC)] and bone morphogenetic protein (BMP) genes (BMP2, BMP4 and BMP7). In mechanistic studies of the antioxidative potential of glabridin, we found that glabridin activated dRib-induced decreased expression of phosphatidylinositol 3'-kinase (PI3K) and protein kinase B 2 (AKT2) genes, which are master regulators of survival-related signaling pathways. Glabridin also upregulated the gene expression of antioxidant enzymes, superoxide dismutase 1 (SOD1) and glutathione peroxidase 4 (GPX4), which were inhibited by dRib. Taken together, these results suggest that glabridin attenuates dRib-induced cell damage in osteoblastic cells and may be useful for the treatment of diabetes-related bone disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.