Commercial micro/nano-manipulators, which utilize piezoelectric stick-slip actuators to achieve high precision over a large workspace, are currently controlled by a human operator at the joint level, leading to unintuitive and timeconsuming teleoperation. Prior work has considered the use of computer-vision-feedback to close a control loop for improved performance, but computer-vision-feedback is not a viable option for many end users. In this paper, we discuss how open-loop models of the micro/nano-manipulator can be used to achieve desired end-effector movements, and we explain the process of obtaining open-loop models. We propose a rate-control teleoperation method that utilizes the obtained model, and we experimentally quantify the effectiveness of the method using a common commercial manipulator (the Kleindiek MM3A).
Eichhornia spp. biomass collected from Chandola lake, Ahmedabad, Gujarat, India. Point of zero charge of the biomass was pH 7.3. Flask study showed pH 5 and 2 to 3 h contact time as optimum conditions for copper sorption. In 24 h of contact time, as high as 85% of copper was removed from 100 ppm copper containing solution. In first 2 h of the contact time the removal reached to 67.25%. Copper loading capacity of the biomass ranged between 2.85 to 1.0 g per 100 g of biomass. Influence of pH, temperature, nickel and zinc was studied by 24 factorial experiments. Under the experimental conditions pH and interactions between pH-nickel, temperature-pH and temperature-pH-nickel-zinc were found to be significant with 60 to 74.7% copper removal. As high as 95% of sorbed copper was desorbed with 0.1 N HNO3. Langmuir and Freundlich isotherms were also studied. Reactor study showed 90% overall copper removal from 25 L of copper containing waste and sulfatereducing bacteria played a significant role. Treatment of actual waste also showed 61% of copper removal. SEMquant element analysis showed presence of 12.39% w/w of copper in the biomass exposed to the waste, where as only 0.0018% of copper was detected in unexposed biomas
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.