In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.
The first EAST (Experimental Advanced Superconducting Tokamak) plasma ignited in 2006 with non-actively cooled steel plates as the plasma-facing materials and components (PFMCs) which were then upgraded into full graphite tiles bolted onto water-cooled copper heat sinks in 2008. The first wall was changed further into molybdenum alloy in 2012, while keeping the graphite for both the upper and lower divertors. With the rapid increase in heating and current driving power in EAST, the W/Cu divertor project was launched around the end of 2012, aiming at achieving actively cooled full W/Cu-PFCs for the upper divertor, with heat removal capability up to 10 MW m−2. The W/Cu upper divertor was finished in the spring of 2014, consisting of 80 cassette bodies toroidally assembled. Commissioning of the EAST upper W/Cu divertor in 2014 was unsatisfactory and then several practical measures were implemented to improve the design, welding quality and reliability, which helped us achieve successful commissioning in the 2015 Spring Campaign. In collaboration with the IO and CEA teams, we have demonstrated our technological capability to remove heat loads of 5000 cycles at 10 MW m−2 and 1000 cycles at 20 MW m−2 for the small scale monoblock mockups, and surprisingly over 300 cycles at 20 MW m−2 for the flat-tile ones. The experience and lessons we learned from batch production and commissioning are undoubtedly valuable for ITER (International Thermonuclear Experimental Reactor) engineering validation and tungsten-related plasma physics.
A new lower tungsten divertor has been developed and installed in the EAST superconducting tokamak to replace the previous graphite divertor with power handling capability increasing from <2 MW m−2 to ∼10 MW m−2, aiming at achieving long-pulse H-mode operations in a full metal wall environment with the steady-state divertor heat flux of ∼10 MW m−2. A new divertor concept, ‘corner slot’ (CS) divertor, has been employed. By using the ‘corner effect’, a strongly dissipative divertor with the local buildup of high neutral pressure near the corner can be achieved, so that stable detachment can be maintained across the entire outer target plate with a relatively lower impurity seeding rate, at a separatrix density compatible with advanced steady-state core scenarios. These are essential for achieving efficient current drive with low-hybrid waves, a low core impurity concentration and thus a low loop voltage for fully non-inductive long-pulse operations. Compared with the highly closed small-angle-slot divertor in DIII-D, the new divertor in EAST exhibits the following merits: (1) a much simpler geometry with integral cassette body structure, combining vertical and horizontal target plates, which are more suitable for actively water-cooled W/Cu plasma facing components, facilitating installation precision control for minimizing surface misalignment, achieving high engineering reliability and lowering the capital cost as well; (2) it has much greater flexibility in magnetic configurations, allowing for the position of the outer strike point on either vertical or horizontal target plates to accommodate a relatively wide triangularity range, δ l = 0.4–0.6, thus enabling to explore various advanced scenarios. A water-cooled copper in-vessel coil has been installed under the dome. Five supersonic molecular beam injection systems have been mounted in the divertor to achieve faster and more precise feedback control of the gas injection rate. Furthermore, this new divertor allows for double null divertor operation and slowly sweeping the outer strike point across the horizontal and vertical target plates to spread the heat flux for long-pulse operations. Preliminary experimental results demonstrate the ‘corner effect’ and are in good agreement with simulations using SOLPS-ITER code including drifts. The EAST new divertor provides a test-bed for the closed divertor concept to achieve steady-state detachment operation at high power. Next step, a more closed divertor, ‘sharp-cornered slot’ divertor, building upon the current CS divertor concept, has been proposed as a candidate for the EAST upper divertor upgrade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.