Genetic and epigenetic plasticity allows tumors to evade single-targeted treatments. Here we direct Bcl2-specific short interfering RNA (siRNA) with 5'-triphosphate ends (3p-siRNA) against melanoma. Recognition of 5'-triphosphate by the cytosolic antiviral helicase retinoic acid-induced protein I (Rig-I, encoded by Ddx58) activated innate immune cells such as dendritic cells and directly induced expression of interferons (IFNs) and apoptosis in tumor cells. These Rig-I-mediated activities synergized with siRNA-mediated Bcl2 silencing to provoke massive apoptosis of tumor cells in lung metastases in vivo. The therapeutic activity required natural killer cells and IFN, as well as silencing of Bcl2, as evidenced by rescue with a mutated Bcl2 target, by site-specific cleavage of Bcl2 messenger RNA in lung metastases and downregulation of Bcl-2 protein in tumor cells in vivo. Together, 3p-siRNA represents a single molecule-based approach in which Rig-I activation on both the immune- and tumor cell level corrects immune ignorance and in which gene silencing corrects key molecular events that govern tumor cell survival.
Summary
Inappropriate drug delivery, secondary toxicities and persistent chemo- and immuno-resistance have traditionally compromised treatment response in melanoma. Using cellular systems and genetically engineered mouse models, we show that melanoma cells retain an innate ability to recognize cytosolic dsRNA and mount persistent stress response programs able to block tumor growth, even in highly immunosuppressed backgrounds. The dsRNA mimic polyinosine-polycytidylic acid (pIC), coadministered with polyethyleneimine (PEI) as a carrier, was identified as an unanticipated inducer of autophagy downstream of an exacerbated endosomal maturation program. A concurrent activity of the dsRNA helicase MDA-5 driving the proapoptotic protein NOXA resulted in an efficient autodigestion of melanoma cells. These results reveal tractable links for therapeutic intervention among dsRNA helicases, endo/lysosomes and apoptotic factors.
Although common cancer hallmarks are well established, lineage-restricted oncogenes remain less understood. Here, we report an inherent dependency of melanoma cells on the small GTPase RAB7, identified within a lysosomal gene cluster that distinguishes this malignancy from over 35 tumor types. Analyses in human cells, clinical specimens, and mouse models demonstrated that RAB7 is an early-induced melanoma driver whose levels can be tuned to favor tumor invasion, ultimately defining metastatic risk. Importantly, RAB7 levels and function were independent of MITF, the best-characterized melanocyte lineage-specific transcription factor. Instead, we describe the neuroectodermal master modulator SOX10 and the oncogene MYC as RAB7 regulators. These results reveal a unique wiring of the lysosomal pathway that melanomas exploit to foster tumor progression.
RecAd can efficiently transduce and activate both pDC and cDC. pDC required TLR9 to detect the presence of recAd whereas cDC also recognized recAd independently of TLR9. These unique immunostimulatory properties support the future development of recombinant Ad as a vector for DNA vaccine approaches.
Currently, novel mouse models of melanoma are being generated that recapitulate the histopathology and molecular pathogenesis observed in human disease. Impaired cell-cycle control, which is a hallmark of both familial and sporadic melanoma, promotes slowly growing carcinogen-induced melanomas in the skin of mice carrying a mutated cyclin-dependent kinase 4 (CDK4 R24C ). Deregulated receptor tyrosine kinase signaling, which is another important feature of human melanoma, leads to spontaneous development of metastatic melanoma after a long latency period in mice overexpressing hepatocyte growth factor/scatter factor (HGF/SF mice). Here we report that treatment with 7,12-dimethylbenz
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.