DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Social debt is analogous to technical debt in many ways: it represents the state of software development organisations as the result of "accumulated" decisions. In the case of social debt, decisions are about people and their interactions. Our objective was to study the causality around social debt in practice. In so doing, we conducted exploratory qualitative research in a large software company. We found many forces together causing social debt; we represented them in a framework, and captured anti-patterns that led to the debt in the first place. Finally, we elicited best practices that technicians adopted to pay back some of the accumulated debt. We learned that social debt is strongly correlated with technical debt and both forces should be reckoned with together during the software process.
Code smells are symptoms of poor design and implementation choices weighing heavily on the quality of produced source code. During the last decades several code smell detection tools have been proposed. However, the literature shows that the results of these tools can be subjective and are intrinsically tied to the nature and approach of the detection. In a recent work the use of Machine-Learning (ML) techniques for code smell detection has been proposed, possibly solving the issue of tool subjectivity giving to a learner the ability to discern between smelly and non-smelly source code elements. While this work opened a new perspective for code smell detection, it only considered the case where instances affected by a single type smell are contained in each dataset used to train and test the machine learners. In this work we replicate the study with a different dataset configuration containing instances of more than one type of smell. The results reveal that with this configuration the machine learning techniques reveal critical limitations in the state of the art which deserve further research.
DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Software engineering evolved from a rigid process to a dynamic interplay of people (e.g., stakeholders or developers). Organizational and social literature call this interplay an Organizational Social Structure (OSS). Software practitioners still lack a systematic way to select, analyze, and support OSSs best fitting their problems (e.g., software development). We provide the state-of-the-art in OSSs, and discuss mechanisms to support OSS-related decisions in software engineering (e.g., choosing the OSS best fitting development scenarios). Our data supports two conclusions. First, software engineering focused on building software using project teams alone, yet these are one of thirteen OSS flavors from literature. Second, an emerging OSS should be further explored for software development: social networks. This article represents a first glimpse at OSS-aware software engineering, that is, to engineer software using OSSs best fit for the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.