The sustainable development goals (SDGs) challenge markets, regulators and practitioners to achieve multiple objectives on water, food and energy. This calls for responses that are coordinated and scaled appropriately. Learning from waterenergy-food nexus could support much-needed building of links between the separate SDGs. The concept has highlighted how risks manifest when blinkered development and management of water, food and energy reduce resource security across sectors and far-reaching scales. However, three under-studied dimensions of these risks must be better considered in order to identify leverage points for sustainable development: first, externalities and shared risks across multiple scales; second, innovative government mechanisms for shared risks; and third, negotiating the balance between silos, politics and power in addressing shared risks.
<p>The near ubiquitous presence of pharmaceutical compounds in environmental waters represents an emerging cause for concern, but gaps remain in our understanding of how human and veterinary pharmaceuticals enter and travel through river catchments. A more holistic approach is needed in order to develop effective management strategies that conform to the catchment-based approach, although this is complicated by the patchy nature of available monitoring data for river water and by the significant seasonal variation in concentrations which makes comparisons even within datasets tenuous. Here, an exploration of pharmaceutical concentrations across the Aire catchment in the UK aims to provide insight into how the underlying connectivity of the catchment system, conceptualized as a source-pathway-receptor model, may determine observed patterns of contamination. To account for temporal variations of inputs and flow, samples collected on two separate occasions (corresponding to low and high flow conditions, respectively) were used to create two spatial snapshots for contamination with nine representative compounds. The snapshots were then used to explore spatial patterns in the catchment and what factors &#8211; topographic, physico-chemical, or related to potential sources and pathways for pharmaceutical pollution &#8211; may influence them. For the first snapshot, conducted in low flow conditions, none of the locations had concentrations above the limit of detection for five of the nine target analytes (Atenolol, Diclofenac, Erythomycin, Iopromide and Sulphadiazine). Results for the detected compounds have emphasized the difference in spatial patterns based on use category: as opposed to the veterinary use compound (Cypermethrin), the human use compounds (Carbamazepine, Lidocaine&#160;and Sucralose) showed significant correlation to contributing area, as well as to population served by the wastewater treatment plants upstream of the sampling sites and corresponding estimates for amounts of prescribed active ingredient. Sucralose also produced strong correlations to Carbamazepine and Lidocaine, supporting its use as a proxy for contamination with human pharmaceuticals, alongside the more frequently cited Carbamazepine. Ultimately, this research will inform the development of a graph representation of the system, used to assess the relative contribution of different pathways as they connect to the river channel and to inform as to the best intervention points within the catchment.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.