Sports periodization has traditionally focused on the exercise aspect of athletic preparation, while neglecting the integration of other elements that can impact an athlete's readiness for peak competition performances. Integrated periodization allows the coordinated inclusion of multiple training components best suited for a given training phase into an athlete's program. The aim of this article is to review the available evidence underpinning integrated periodization, focusing on exercise training, recovery, nutrition, psychological skills, and skill acquisition as key factors by which athletic preparation can be periodized. The periodization of heat and altitude adaptation, body composition, and physical therapy is also considered. Despite recent criticism, various methods of exercise training periodization can contribute to performance enhancement in a variety of elite individual and team sports, such as soccer. In the latter, both physical and strategic periodization are useful tools for managing the heavy travel schedule, fatigue, and injuries that occur throughout a competitive season. Recovery interventions should be periodized (ie, withheld or emphasized) to influence acute and chronic training adaptation and performance. Nutrient intake and timing in relation to exercise and as part of the periodization of an athlete's training and competition calendar can also promote physiological adaptations and performance capacity. Psychological skills are a central component of athletic performance, and their periodization should cater to each athlete's individual needs and the needs of the team. Skill acquisition can also be integrated into an athlete's periodized training program to make a significant contribution to competition performance.
Two experiments using a temporal occlusion paradigm (the first with expert and novice participants and the second with participants of intermediate skill) were conducted to examine the capability of tennis players to predict the direction of an opponent's service in situ. In both experiments two different response conditions, reflecting differing degrees of perception-action coupling, were employed. In a coupled condition players were required to make a movement-based response identical to that which they would use to hit a return of service in a game situation, whereas in an uncoupled condition a verbal prediction of service direction was required. Experiment 1 provided clear evidence of superior prediction accuracy under the coupled response condition when ball flight was available, plus some limited evidence to suggest that superior prediction accuracy under uncoupled response conditions might hold true if only advance (pre-contact) information was available. Experiment 2 showed the former finding to be a robust one, but was unable to reveal any support for the latter. Experiment 1 also revealed that expert superiority is more apparent for predictions made under natural (coupled) than uncoupled response-mode conditions. Collectively, these findings suggest that different perceptual processes may be in operation in anticipatory tasks which depend on skill level, the type of information presented, and degree of perception-action coupling inherent in the task requirements.
Four experiments are reported that examine the ability of cricket batsmen of different skill levels to pick up advance information to anticipate the type and length of balls bowled by swing and spin bowlers. The information available upon which to make the predictive judgements was manipulated through a combination of temporal occlusion of the display and selective occlusion or presentation of putative anticipatory cues. In addition to a capability to pick up advance information from the same cues used by intermediate and low-skilled players, highly skilled players demonstrated the additional, unique capability to pick up advance information from some specific early cues (especially bowling hand and arm cues) to which the less skilled players were not attuned. The acquisition of expert perceptual-motor skill appears to involve not only refinement of information extraction but also progression to the use of earlier, kinematically relevant sources of information.
The aim of this experiment was to determine the effectiveness of two video-based perceptual training approaches designed to improve the anticipatory skills of junior tennis players. Players were assigned equally to an explicit learning group, an implicit learning group, a placebo group or a control group. A progressive temporal occlusion paradigm was used to examine, before and after training, the ability of the players to predict the direction of an opponent's service in an in-vivo on-court setting. The players responded either through hitting a return stroke or making a verbal prediction of stroke direction. Results revealed that the implicit learning group, whose training required them to predict serve speed direction while viewing temporally occluded video footage of the return-of-serve scenario, significantly improved their prediction accuracy after the training intervention. However, this training effect dissipated after a 32 day unfilled retention interval. The explicit learning group, who received instructions about the specific aspects of the pre-contact service kinematics that are informative with respect to service direction, did not demonstrate any significant performance improvements after the intervention. This, together with the absence of any significant improvements for the placebo and control groups, demonstrated that the improvement observed for the implicit learning group was not a consequence of either expectancy or familiarity effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.