The aim of this article was to understand how active power is used in squat and countermovement jumps. A simple empirical model comprising a mass, a spring, an active element and a damper, together with an optimisation principle, was used to identify the mechanical factors that maximise performance of jumps without countermovement (squat jumps, SJ) and with countermovement (CMJ). Twelve amateur volleyball players performed SJ from two initial positions and CMJ with two degrees of counterbalancing, while kinematic data were collected (jump height, push-off duration and position of the centre of mass). The model adjusted well to real data of SJ through all the impulse phase, and slightly less adequately at the end of this phase for CMJ. Nevertheless, it provides a satisfactory explanation for the generation and utilisation of active power for both type of jumps. On average, the estimated power of the active elements, the spring, and the damper were greater in the SJ. Based upon the result obtained with this model, we suggest that active power is best evaluated with SJ. The reason for this is that, during this kind of jump, the elements associated with the damper consume much of the energy produced by the active elements. The participation of the elements that consume the energy generated by the active elements is less in CMJ than in SJ, allowing for a better utilisation of this energy. In this way it is possible to achieve a better performance in CMJ with less active power.
Jump performance is related to the ability of lower limb muscles to produce power during the push-off phase. However, it is not known if the power associated with the action of active and passive elements of the lower limb muscles change significantly in jumps with positive and negative loads. In this study, the power associated with the action of passive and active components of lower limb muscles as a whole in squat jumps (SJ) with increase and decrease in the external load is analyzed Fourteen trained male subjects (22.5 ± 2.1 years; 176.5 ± 5.4 cm; 75.8 ± 5.8 kg; BMI 24.3 ± 1.8) performed SJ on a force plate. A functional electromechanical dynamometer (FEMD) system was used to change the external load in a range of −30 to +30% of the subject’s body weight. A model comprising a mass, a spring, an active element, and a damper was used. We applied an optimization principle to determine power in center of mass (CoM) (ptot), the powers associated with active element (pact), damper (pƔ), and spring (pk) during the push-off phase. Significant differences between loading conditions for each variable were tested by repeated-measures one-way ANOVA with Bonferroni post hoc analysis, p < 0.05. Shapes of the average curves for instantaneous variation of pact, pƔ, pk, and ptot during push-off with positive loads were closer to 0% than with negative loads. As the load increased, maximum values of ptot, pƔ, and pk decreased. Only with a negative load of −30% did ptot increase significantly, this was not accompanied by changes in pact, pƔ, and pk. The load of one’s own body provides conditions for develop high pact peaks, although the maximum ptot is not achieved in that condition. The increase in negative loads produces a significant increase in ptot, but not in pact and can be interpreted as a situation in which the power delivered to the system by the action of active components is better used. The SJ with positive load, although more similar to the instantaneous changes that occur to the SJ with body weight are not gestures where high power is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.