The article presents the general characteristics of road transport safety in Poland over the years 2009-2019. The key objective of this study was to investigate the main factors of road accidents in Poland. Up till now, the number of road accidents has been analysed in detail on the basis of data on collisions from rear, side and frontal perspective. Moreover, in the article, statistics regarding the number of perpetrators of accidents by gender and age are summarized, as well as dynamics aspects of changes related to new passenger vehicles and trucks in Poland in 2009-2019 are indicated. As a result, the intensity of rear collisions rather than frontal collisions is apparent. Hence, an inconspicuous rear collision by not braking a speeding vehicle carries a risk of the upper cervical spine.
The article presents a model of an anthropometric dummy designed for low velocity crash tests, designed in ADAMS. The model consists of rigid bodies connected with special joints with appropriately selected stiffness and damping. The simulation dummy has the appropriate dimensions, shape, and mass of individual elements to suit a 50 percentile male. The purpose of this article is to draw attention to low speed crash tests. Current dummies such as THOR and Hybrid III are used for crash tests at speeds above 40 km/h. In contrast, the low-speed test dummy currently used is the BioRID-II dummy, which is mainly adapted to the whiplash test at speeds of up to 16km/h. Thus, it can be seen that there is a gap in the use of crash test dummies. There are no low-speed dummies for side and front crash tests, and there are no dummies for rear crash tests between 16 km/h and 25 km/h. Which corresponds to a collision of a passenger vehicle with a hard obstacle at a speed of 30 km/h. Therefore, in collisions with low speeds of 20 km/h, the splash airbag will probably not be activated. The article contains the results of a computer simulation at a speed of 20 km/h vehicle out in the ADAMS program. These results were compared with the experimental results of the laboratory crash test using volunteers and the Hybrid III dummy. The simulation results are the basis for building the physical model dummy. The simulation aims to reflect the greatest possible compliance of the movements of individual parts of the human body during a collision at low speed.
The article presents the design of the upper limb joints of an anthropometric dummy intended for rear crash tests for low impact speeds. These joints represent the connection of the hand to the forearm, the forearm to the arm, and the arm to the shoulder. The designed joint is adapted to the construction of a dummy representing the 50th percentile male. The joints currently used on Hybrid III dummies require calibration after each crash test. The construction of the new joint ensures the appropriate strength of individual joint elements and the repeatable value of the joint characteristics without the need for frequent calibrations. The designed joints have the ability to set a variable stiffness characteristic, thanks to which it is possible to use this joint universally in dummies representing populations of other percentile sizes. The range of movement of the joints has been selected to reflect the range of mobility of the upper limb of an adult. The characteristics of the joints were compared with those used in the joints of the Hybrid III 50 percentile male dummy. Moreover, it should be noted that the constructed joints of the upper limb are made by hand; therefore, their comparison with the Hybrid III dummy shows some deviations in the moments of resistance. Making the joints with a 3D printer, taking into account the appropriate material, will ensure greater accuracy and will also result in joining the individual elements of the joint into a whole. The obtained results show slight differences between the moment of resistance in the joints of the constructed anthropometric dummy compared to the hybrid III dummy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.