Synthetic biology allows the generation of complex recombinant systems using libraries of modular components. Two major near-market applications are whole-cell biosensors and biocatalysts for conversion of lignocellulosic biomass to biofuels and chemical feedstocks. Whole cell biosensors consist of cells genetically modified so that binding of a specific analyte to a receptor in the cell triggers generation of a specific output which can be detected and quantified. Since these systems are intrinsically modular in nature, with separate systems for signal detection, signal processing, and generation of the output, they are well suited to a synthetic biology approach. Likewise, effective degradation of cellulosic biomass requires a battery of different enzymes working together to degrade the matrix, expose the polysaccharide fibres, hydrolyse these to release sugars, and convert the sugars to useful products. Synthetic biology provides a useful set of tools to generate such systems. In this chapter we consider how synthetic biology has been applied to these applications, and look at possible future developments in these areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.