Knowledge of Global Navigation Satellite System (GNSS) antenna phase center variations plays a key role in precise positioning. Proper modeling is achieved by accessing antenna phase center corrections, which are determined in the calibration process. For most receiver antenna types, the International GNSS Service provides such corrections for two GPS and GLONASS carrier signals. In the case of Galileo, access to phase center corrections is difficult; only antennas calibrated in the anechoic chambers have available corrections for Galileo frequencies. Hence, in many of the studies, GPS-dedicated corrections are used for these Galileo frequencies. Differential analysis was conducted in this study to evaluate the impact of such change. In total, 25 stations belonging to the EUREF Permanent Network and equipped with individual calibrated antennas were the subject of this research. The results for both the absolute and relative positioning methods are clear: using GPS L2 corrections for Galileo E5a frequency causes a bias in the estimated height of almost 8 mm. For the horizontal component, a significant difference can be noticed for only one type of antenna.
In this study, we compared two sets of antenna phase center corrections for groups of the same type of antenna mounted at the continuously operating global navigation satellite system (GNSS) reference stations. The first set involved type mean models provided by the International GNSS Service (release igs08), while the second set involved individual models developed by Geo++. Our goal was to check which set gave better results in the case of height estimation. The paper presents the differences between models and their impact on resulting height. Analyses showed that, in terms of the stability of the determined height, as well as its variability caused by increasing the facade mask, both models gave very similar results. Finally, we present a method for how to estimate the impact of differences in phase center corrections on height changes.
This research presents the analysis of using different weighting functions for the GPS and Galileo observations in Precise Point Positioning (PPP) performance for globally located stations for one week in 2021. Eight different weighting functions of observations dependent on the elevation angle have been selected. It was shown that the use of different weighting functions has no impact on the horizontal component but has a visible impact on the vertical component, the tropospheric delay and the convergence time. Depending on the solutions, i.e., GPS-only, Galileo-only or GPS+Galileo, various weighting functions turned out to the best. The obtained results confirm that the Galileo solution has comparable accuracy to the GPS solution. Also, with the Galileo solution, the best results were obtained for functions with a smaller dependence on the elevation angle than for GPS, since Galileo observations at lower elevation angles have better performance than GPS observations. Finally, a new weighting approach was proposed, using two different weighting functions from the best GPS-only and Galileo-only for GPS+Galileo solution. This approach improves the results by 5% for convergence time and 30% for the troposphere delay when compared to using the same function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.