The launch of Sentinel-2A and B satellites has boosted the development of many applications that could benefit from the fine resolution of the supplied information, both in time and in space. Crop classification is a necessary task for efficient land management. We evaluated the benefits of combining Landsat-8 and Sentinel-2A information for irrigated crop classification. We also assessed the robustness and efficiency of 22 nonparametric classification algorithms for classifying irrigated crops in a semiarid region in the southeast of Spain. A parcel-based approach was proposed calculating the mean normalized difference vegetation index (NDVI) of each plot and the standard deviation to generate a calibration-testing set of data. More than 2000 visited plots for 12 different crops along the study site were utilized as ground truth. Ensemble classifiers were the most robust algorithms but not the most efficient because of their low prediction rate. Nearest neighbor methods and support vector machines have the best balance between robustness and efficiency as methods for classification. Although the F1 score is close to 90%, some misclassifications were found for spring crops (e.g., barley, wheat and peas). However, crops with quite similar cycles could be differentiated, such as purple garlic and white garlic, showing the powerfulness of the developed tool.
Water authorities are required to have a survey of large woody debris (LWD) in river channels and to manage this aspect of the stream habitat, making decisions on removing, positioning or leaving LWD in a natural state. The main objective of this study is to develop a new methodology that assists in decision making for sustainable management of river channels by using generated low-cost, geomatic products to detect LWD. The use of low-cost photogrammetry based on the use of economical, conventional, non-metric digital cameras mounted on low-cost aircrafts, together with the use of the latest computational vision techniques and open-source geomatic tools, provides useful geomatic products. The proposed methodology, compared with conventional photogrammetry or other traditional methods, led to a cost savings of up to 45%. This work presents several contributions for the area of free and open source software related to Geographic Information System (FOSSGIS) applications to LWD management in streams, while developing a QGIS [1] plugin that characterizes the risk from the automatic calculation of geometrical parameters.
Last advances in sensors, photogrammetry and computer vision have led to high-automation levels of 3D reconstruction processes for generating dense models and multispectral orthoimages from Unmanned Aerial Vehicle (UAV) images. However, these cartographic products are sometimes blurred and degraded due to sun reflection effects which reduce the image contrast and colour fidelity in photogrammetry and the quality of radiometric values in remote sensing applications. This paper proposes an automatic approach for detecting sun reflections problems (hotspot and sun glint) in multispectral images acquired with an Unmanned Aerial Vehicle (UAV), based on a photogrammetric strategy included in a flight planning and control software developed by the authors. In particular, two main consequences are derived from the approach developed: (i) different areas of the images can be excluded since they contain sun reflection problems; (ii) the cartographic products obtained (e.g., digital terrain model, orthoimages) and the agronomical parameters computed (e.g., normalized vegetation index-NVDI) are improved since radiometric defects in pixels are not considered. Finally, an accuracy assessment was performed in order to analyse the error in the detection process, getting errors around 10 pixels for a ground sample distance (GSD) of 5 cm which is perfectly valid for agricultural applications. This error confirms that the precision in the detection of sun reflections can be guaranteed using this approach and the current low-cost UAV technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.