A concise synthesis of (16S,20S)-3β-hydroxy-5α-pregnane-20,16-carbolactam from tigogenin via the corresponding lactone is described. The most efficient synthetic route consisted of the lactone ring-opening with aminoalane reagent followed by PDC or Dess-Martin oxidation. The oxo-amide obtained was subjected to cyclization with Et3SiH/TFA or Et3SiH/Bi(TfO)3. Alternately, the lactone was converted first to the oxo-acid, which was then subjected to the microwave-assisted reductive amination. N-Alkyl derivatives were also obtained in a similar way.
Carbon nanostructures offer a perfect link between nanoscale materials and organic molecules, making them an ideal platform for molecular catalysts. Herein, an efficient, straightforward, and high-yield synthetic approach is described to synthesize aryl boronic acid containing the pyrene moiety that is noncovalently immobilized by π−π interaction to carbon nano-onions' surface. The nanostructured carbon material catalyzes the direct amide coupling reaction under microwaved heating in the absence of a solvent. The multilayered structures of carbon nano-onions ensure high thermal stability, and simultaneously, they are excellent microwaved absorbers, which reduce energy consumption. The absorption of microwaved radiation by the nanostructured carbon catalyst effectively influences yield of the catalytic reaction, which is up to 94%. Additionally, the recovery of catalytic material is straightforward, and the mass losses are negligible. Microwave heating in a solvent-free condition simplifies the reaction and reduces the amount of waste, which, in turn, depletes the environmental impact.
Derivatives based on pyridine-2-6- and furan-2,5-dicarboxamide scaffolds reveal numerous chemical properties and biological activities. This fact makes them an exciting research topic in supramolecular and coordination chemistry and in discovering new pharmacologically-active compounds. This work aimed to obtain a series of symmetrical pyridine-2-6- and furan-2,5-dicarboxamides through a condensation reaction of the appropriate acyl chlorides and aromatic amides. Successful syntheses were confirmed with NMR spectroscopy. We solved their crystal structures for seven compounds; two pyridine and five furan derivatives. Based on our crystallographic studies, we were able to indicate supramolecular features of the crystals under investigation. Additionally, Hirshfeld surface analysis allowed us to calculate a distribution of intermolecular contacts in the dicarboxamide crystals.
In this study, well-known oligomers containing ethyl methacrylate (EMA) and glycidyl methacrylate (GMA) components for the synthesis of the oligomeric network [P(EMA)-co-(GMA)] were used. In order to change the hydrophobic character of the [P(EMA)-co-(GMA)] to a more hydrophilic one, the oligomeric chain was functionalized with ethanolamine, xylitol (Xyl), and L-ornithine. The oligomeric materials were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy, scanning electron microscopy, and differential thermogravimetric analysis. In the final stage, thanks to the large amount of -OH groups, it was possible to obtain a three-dimensional hydrogel (HG) network. The HGs were used as a matrix for the immobilization of methylene blue, which was chosen as a model compound of active substances, the release of which from the matrix was examined using spectrophotometric detection. The cytotoxic test was performed using fluid extracts of the HGs and human skin fibroblasts. The cell culture experiment showed that only [P(EMA)-co-(GMA)] and [P(EMA)-co-(GMA)]-Xyl have the potential to be used in biomedical applications. The studies revealed that the obtained HGs were porous and non-cytotoxic, which gives them the opportunity to possess great potential for use as an oligomeric network for drug reservoirs in in vitro application.
Curcumin (CUR) is a natural compound that exhibits anti-inflammatory, anti-bacterial, and other biological properties. However, its application as an effective drug is problematic due to its poor oral bioavailability, solubility in water, and poor absorption from the gastrointestinal tract. The aim of this work is to synthesize monocarbonyl analogs of CUR based on the 9-methyl-9-azabicyclo[3.2.1]nonan-3-one (pseudopelletierine, granatanone) scaffold to improve its bioavailability. Granatane is a homologue of tropane, whose structure is present in numerous naturally occurring alkaloids, e.g., l-cocaine and l-scopolamine. In this study, ten new pseudopelletierine-derived monocarbonyl analogs of CUR were successfully synthesized and characterized by spectral methods and X-ray crystallography. Additionally, in vitro test of the cytotoxicity and anti-inflammatory properties of the synthesized compounds were performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.