The improvement of the solar efficiency of photocatalytic materials is important for solar driven environmental remediation and solar energy harvesting applications. Photoelectrochemical characterization of nitrogen and fluorine codoped titanium dioxide (N,F-TiO2) was used to probe the mechanism of visible light activity. The spectral photocurrent response under visible irradiation did not correlate with the optical absorption spectrum of the N,F-TiO2; however, open-circuit photopotential measurements provided better correlation to the optical absorption spectra. These observations suggest that electrons excited to the conduction band from the N-induced midgap state are rapidly trapped by defect levels below the conduction band. Reactive oxygen species (ROS) can be produced via the reduction of molecular oxygen by conduction band electrons leading to the oxidative degradation of organic pollutants, and singlet oxygen may play a role. If there is no loss in the band gap activity, as compared to undoped titania, then any additional visible light activity may give an overall improvement in the solar efficiency. The photocurrent response should not be used as a direct measure of photocatalytic activity for doped titania as the oxygen reduction pathway is vitally important for the generation of ROS, whereas hole transfer from dopant midgap states may not be so critical.
A novel ambient pressure microwave-assisted technique is developed in which silver and indium modified ZnS is synthesised. The as prepared ZnS is characterised by X-ray diffraction, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional chamber furnace, it is completely converted to ZnO at 600 °C. Both cubic blende and hexagonal ZnS show excellent photocatalytic activity under irradiation from a 60 watt light bulb. These ZnS samples also show significantly higher photocatalytic activity compared to the commercially available TiO 2 (Evonik-Degussa P-25).
Nanocrystalline photocatalysts, prepared under ambient conditions using a microwave assisted synthesis, show indoor light photocatalytic activity for the degradation of S. aureus and E. coli. The zinc sulfide (ZnS) nanomaterials, prepared by a microwave assisted synthesis, are shown to be cubic blende structure with an average crystallite size of 4 -6 nm. The anti-bacterial activity of these nanomaterials is investigated under irradiation from a 60 -watt light bulb and photocatalytic activity is revealed to be due to the defects present in the crystal structure. The ZnS shows anti-bacterial action as both a bacteriostatic and bacteriocidal (88 % reduction in the amount of bacteria in 5 h) material and the methods of bacterial degradation on the ZnS is discussed. The anti-bacterial actions of these materials were also compared with commercial ZnS and Evonik-Degussa P-25. A detailed mechanism for the light absorption in the visible light region of the microwave prepared ZnS is proposed based on the luminescence spectroscopy.
An efficient, rapid and straightforward method for the preparation of nitrogen and fluorine (N, F) codoped high temperature stable anatase using a microwave pre-treatment is reported. Using a single source, ammonium fluoride (NH4F) for both nitrogen and fluorine, effective doping of the precursor titanium isopropoxide (TTIP) was possible. These samples were characterised for their structural and optical properties using X-ray diffraction (XRD), Fourier transform IR (FTIR), Raman spectroscopy and UV-vis spectroscopy. In terms of the anatase to rutile transition enhancement using a novel microwave assisted technique, the sample prepared in a composition Fagan et al, Applied Surface Science 371, 2016, 447-452 of 1:8 TiO2: NH4F at 1200 °C was seen to be most effective, having stable anatase present at 57.1 % compared to undoped TiO2 being 100 % rutile from 900 °C. This method involves the production of ammonium oxofluorotitanates (NH4TiOF3) at low temperatures. The inclusion of these intermediates greatly reduces the particle size growth and delays the anatase to rutile transition. The photocatalytic activity of these materials was studied by analysing the degradation of an organic dye, rhodamine 6G as a model system and the rate constant was calculated by pseudo-first-order kinetics. These results showed that the doped sample (0.0225 min -1 ) was three times more active than the undoped sample (0.0076 min -1 ) and over seven times faster than the commercial TiO2 photocatalyst standard Degussa P-25 calcined at 1200 °C (0.0030 min -1 ). The formation of intermediate compounds, oxofluorotitanates, was identified as the major reason for a delay in the anatase to rutile transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.