DNA replication is a fundamental biological process. The initial step in eukaryotic DNA replication is the assembly of the pre-initiation complex, including the formation of two head-tohead hexameric helicases around the replication origin. How these hexameric helicases interact with their origin dsDNA remains unknown. Here, we report the co-crystal structure of the SV40 Large-T Antigen (LT) hexameric helicase bound to its origin dsDNA. The structure shows that the six subunits form a near-planar ring that interacts with the origin, so that each subunit makes unique contacts with the DNA. The origin dsDNA inside the narrower AAA+ domain channel shows partial melting due to the compression of the two phosphate backbones, forcing Watson-Crick base-pairs within the duplex to flip outward. This structure provides the first snapshot of a hexameric helicase binding to origin dsDNA, and suggests a possible mechanism of origin melting by LT during SV40 replication in eukaryotic cells.
BackgroundSimian Virus 40 (SV40) Large Tumor Antigen (LT) is an essential enzyme that plays a vital role in viral DNA replication in mammalian cells. As a replicative helicase and initiator, LT assembles as a double-hexamer at the SV40 origin to initiate genomic replication. In this process, LT converts the chemical energy from ATP binding and hydrolysis into the mechanical work required for unwinding replication forks. It has been demonstrated that even though LT primarily utilizes ATP to unwind DNA, other NTPs can also support low DNA helicase activity. Despite previous studies on specific LT residues involved in ATP hydrolysis, no systematic study has been done to elucidate the residues participating in the selective usage of different nucleotides by LT. In this study, we performed a systematic mutational analysis around the nucleotide pocket and identified residues regulating the specificity for ATP, TTP and UTP in LT DNA unwinding.MethodsWe performed site-directed mutagenesis to generate 16 LT nucleotide pocket mutants and characterized each mutant’s ability to unwind double-stranded DNA, oligomerize, and bind different nucleotides using helicase assays, size-exclusion chromatography, and isothermal titration calorimetry, respectively.ResultsWe identified four residues in the nucleotide pocket of LT, cS430, tK419, cW393 and cL557 that selectively displayed more profound impact on using certain nucleotides for LT DNA helicase activity.ConclusionLittle is known regarding the mechanisms of nucleotide specificity in SV40 LT DNA unwinding despite the abundance of information available for understanding LT nucleotide hydrolysis. The systematic residue analysis performed in this report provides significant insight into the selective usage of different nucleotides in LT helicase activity, increasing our understanding of how LT may structurally prefer different energy sources for its various targeted cellular activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.