The processing of color image data using directional information is studied. The class of vector directional filters (VDF), which was introduced by the authors in a previous work, is further considered. The analogy of VDF to the spherical median is shown, and their relation to the spatial median is examined. Moreover, their statistical and deterministic properties are studied, which demonstrate their appropriateness in image processing. VDF result in optimal estimates of the image vectors in the directional sense; this is very important in the case of color images, where the vectors' direction signifies the chromaticity of a given color. Issues regarding the practical implementation of VDF are also considered. In addition, efficient filtering schemes based on VDF are proposed, which include adaptive and/or double-window structures. Experimental and comparative results in image filtering show very good performance measures when the error is measured in the L*a*b* space. L*a*b* is known as a space where equal color differences result in equal distances, and therefore, it is very close to the human perception of colors. Moreover, an indication of the chromaticity error is obtained by measuring the error on the Maxwell triangle; the results demonstrate that VDF are very accurate chromaticity estimators.
Recent works in multispectral image processing advocate the employment of vector approaches for this class of signals. Vector processing operators that involve the minimization of a suitable error criterion have been proposed and shown appropriate for this task. In this framework, two main classes of vector processing filters have been reported in the literature. Astola et al. (1990) introduce the well-known class of vector median filters (VMF), which are derived as maximum likelihood (ML) estimates from exponential distributions. Trahanias et al. (see ibid., vol.2, no.4, p.528-34, 1993 and vol.5, no.6, p.868-80, 1996) study the processing of color image data using directional information, considering the class of vector directional filters (VDF). We introduce a new filter structure, the directional-distance filters (DDF), which combine both VDF and VMF in a novel way. We show that DDF are robust signal estimators under various noise distributions, they have the property of chromaticity preservation and, finally, compare favorably to other multichannel image processing filters.
We present two techniques that are shown to yield improved Keyword Spotting (KWS) performance when using the ATWV/MTWV performance measures: (i) score normalization, where the scores of different keywords become commensurate with each other and they more closely correspond to the probability of being correct than raw posteriors; and (ii) system combination, where the detections of multiple systems are merged together, and their scores are interpolated with weights which are optimized using MTWV as the maximization criterion. Both score normalization and system combination approaches show that significant gains in ATWV/MTWV can be obtained, sometimes on the order of 8-10 points (absolute), in five different languages. A variant of these methods resulted in the highest performance for the official surprise language evaluation for the IARPA-funded Babel project in April 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.