Tujuan penelitian ini adalah mendeskripsikan kemampuan pemecahan masalah matematika mahasiswa tahun pertama dalam memecahkan masalah geometri konteks budaya. Jenis penelitian adalah penelitian kualitatif eksploratif. Subjek penelitian adalah mahasiswa tahun pertama Jurusan Pendidikan Matematika Universitas Nusa Cendana yang terdiri dari tiga subjek (kemampuan tinggi, sedang dan rendah). Instrumen utama dalam penelitian ini adalah peneliti sendiri dan dibantu dengan soal tes pemecahan masalah konteks budaya serta pedoman wawancara. Data penelitian dianalisis secara kualitatif berdasarkan indikator kemampuan pemecahan masalah serta divalidasi menggunakan triangulasi waktu. Hasil penelitian menunjukkan subjek berkemampuan rendah memiliki kemampuan pemecahan masalah dalam kategori cukup. Subjek memiliki keterbatasan dalam pemahaman dan penggunaan aturan matematika dalam pemecahan masalah konteks budaya. Subjek berkemampuan sedang cenderung memiliki ketegori kemampuan pemecahan masalah bergantung pada konteks masalah. Subjek masih belum konsisten terkait kemampuannya dalam pemecahan masalah matematika. Subjek berkemampuan tinggi memiliki kemampuan pemecahan masalah dalam kategori baik. Subjek memiliki performa matematika yang baik yang ditandai dengan pemahaman masalah yang baik, perencanaan, implementasi dan solusi yang akurat sesuai konteks masalah. AbstractThe purpose of this research is to describe the ability of mathematical problem solving of First-Year University students in solving geometry problems of cultural context. This research is qualitative-explorative. The subjects are from the First-Year University student of Mathematics Education Department at Nusa Cendana University who consists of three subjects (high, medium, and low ability). The main instrument in this research is researcher himself and equipped by instruments of problem-solving question and interview guides. Data were analyzed qualitatively based on indicators of problem-solving abilities and validated using time triangulation. The results showed the low ability subject had the problem-solving ability in the medium category. Subjects had limited in understanding and use of the rules of mathematics in solving cultural context problems. The medium ability subject had problem-solving ability depend on the context of the problem. The subject still not consistently related to its ability in solving mathematical problems. The high ability subject had the problem-solving ability in the good category. The subject had good mathematics performance that is characterized by a good understanding of the problem, planning, implementation and accurate solutions to context problems.
The purpose of this study is to show the differences in problem-solving ability between first-year University students who received culture-based contextual learning and conventional learning. This research is a quantitative research using quasi-experimental research design. Samples were the First-year students of mathematics education department; Nusa Cendana University consists of 58 students who were divided into two groups each of 29 students. The results showed there are differences in the n-gain average of problemsolving ability significantly between students who receive culture-based contextual learning and conventional learning. The n-gain average of experiment group is 0.51 or medium category while the average n-gain of the control group is 0.29 or low category. Student categories of SNMPTN and Mandiri are significantly different whereas students" category of SBMPTN between the two groups does not differ significantly.
The purpose of this research is to develop contextual mathematical thinking learning model which is valid, practical and effective based on the theoretical reviews and its support to enhance higher-order thinking ability. This study is a research and development (R & D) with three main phases: investigation, development, and implementation. The experiment consisted of 78 Junior High School students who were divided into two groups, namely experimental group and control group. The model development phase results the syntax of contextual mathematical thinking learning model which are as follows: (1) presentation of the contextual problems; (2) asking the critical and analytical questions; (3) individual and group investigation; (4) presentation and discussion; (5) reflection; and (6) higher-order thinking test. The implementation phase concludes the contextual mathematical thinking learning model which can be applied effectively to enhance the students' higher-order thinking ability. This model is able to intensify higher-order thinking ability at high category. The observation of learning activities was seen in the main elements of learning model which are syntax, social system, reaction principle, support system, instructional impact, and accompanist impact. The three main elements were observed by the observer and showed an average in the good category: syntax has an average of 3.5, social system has an average of 3.52, and reaction principle has an average of 3.47. This model is recommended for mathematics learning activities in the classroom to support the improvement of higher-order thinking ability. Contextual problems can be presented to the local cultural context that allows students to learn mathematics in a real context.
The purpose of this study is to explore pre-service mathematics teachers' conception of higher-order thinking in Bloom's Taxonomy, to explore pre-service mathematics teachers' ability in categorizing six cognitive levels of Bloom's Taxonomy as lower-order thinking and higher-order thinking, and preservice mathematics teachers' ability in identifying some questionable items as lower-order and higher-order thinking. This research is a descriptive quantitative research. The participants are 50 Third-Year Students of Mathematics Education Department at Universitas Nusa Cendana. The results showed: (1) pre-service mathematics teachers' conception of lower-order and higher-order thinking more emphasis on the different between the easy and difficult problem, calculation problem and verification problem, conceptual and contextual, and elementary and high-level problem; (2) preservice mathematics teachers categorized six cognitive levels at the lower-order and higher-order thinking level correctly except at the applying level, preservice mathematics teachers placed it at the higher-order thinking level; (3) pre-service mathematics teacher tend to made the wrong identification of the test questions that were included in the lower-order and higher-order thinking. Keywords: Bloom's taxonomy, Higher-order thinking. AbstrakTujuan penelitian ini adalah untuk mengeksplorasi konsepsi calon guru matematika tentang higher order thinking dalam taksonomi Bloom, mengeksplorasi kemampuan calon guru matematika dalam mengkategorikan enam level kognitif dalam Taxonomi Bloom sebagai lower order thinking dan higher order thinking, dan kemampuan calon guru matematika dalam mengidentifikasi item test sebagai lower order thinking dan higher order thinking. Penelitian ini adalah penelitian deskripstif kuantitatif. Subjek penelitian adalah 50 mahasiswa tingkat tiga di Jurusan Pendidikan Matematika, Fakultas Keguruan dan Ilmu pendidikan, Universitas Nusa Cendana. Hasil penelitian menunjukan bahwa: (1) konsepsi calon guru matematika tentang lower-order thinking dan higher-order thinking lebih menekankan pada perbedaan tingkatan masalah yang sulit dan mudah, masalah perhitungan dan pembuktian, konseptual dan kontekstual, tingkat berpikir elementer dan tingkat berpikir lanjut; (2) calon guru matematika mengkategorisasikan enam level kognitif pada level lower-order thinking dan higher-order thinking secara tepat kecuali pada level aplikasi, banyak calon guru matematika yang menempatkannya pada level higher-order thinking; (3) calon guru matematika cenderung salah mengidentifikasi soal test yang termasuk dalam lower order thinking dan higher-order thinking.
AbstrakMateri pecahan merupakan salah satu materi matematika yang rumit. Kerumitan pecahan tidak saja dialami oleh siswa, tetapi juga mahasiswa dan guru. Penyebabnya adalah penguasaan konsep pecahan yang rendah. Karena guru pada jenjang pendidikan Dasar memperkenalkan pecahan dengan metode ceramah dan langsung memberi contoh soal kemudian siswa mengerjakan soal latihan. Guru mengajarkan algoritma rutin dalam mengerjakan soal, Edo. I.S (2016). Metode ini dipraktekan secara turun temurun. Karena itu siswa merasa jenuh dan tidak tertarik belajar. Elly Risman (2008) mengatakan bahwa,” Ada tiga cara penyampaian yang efektif bagi anak, yakni dengan bermain, bernyanyi, dan bercerita. Sementara Pendekatan pembelajaran yang berlandaskan pada filosofi bahwa matematika merupakan aktivitas Insani adalah pendekatan Pembelajaran Matematika Realistik. Karena itu penelitian ini bertujuan untuk mengetahui bagaimana desain pembelajaran pecahan dengan menggunakan pendekatan Matematika Realistik Konteks Permainan Siki Doka (taplak). Adapun metode penelitian yang digunakan adalah Desain Riset yang dilaksanakan di SDN. Angkasa Kupang dan SDK. Kristen Tunas Bangsa Kupang pada siswa kelas III. Hasilnya adalah siswa sangat antusias dan menikmati seluruh aktivitas pembelajaran karena mereka belajar melalui kegiatan bermain, menggambar, mewarnai, menggunting dan menyusun kertas origami yang berwarna warni. Siswa bukan saja telah memahami konsep pecahan sederhana, membandingkan pecahan sederhana, dan memecahkan masalah yang berkaitan dengan pecahan sederhana tetapi juga mereka sudah terlibat dalam aktivitas yang berhubungan dengan konsep penjumlahan dan kelipatan pecahan.Kata Kunci: Pembelajaran Pecahan, Konsep Pecahan, Perbandingan Pecahan, Pembelajaran pecahan dengan RME, pembelajaran pecahan conteks permainan tradisional.AbstractFraction is one of hard subject of mathematics. Fractional complexity is not only experienced by students, but also students and teachers. They found difficulty to solve any mathematics problems related to fractions due to weak of fraction concept and disspointed learning method. Because teachers in elementary taught them using lecture method through routin algorthm. Teacher began the lessons by given short explanation, then some routin example provided on students’ text book. In the end of the lessons students did some exercise, Edo.I. S (2016). Therefore, students bored to follow all of learning process. Whereas Elly Risman (2008) said that there are three effective ways to teach children i.e. by playing, singing and storytelling. While Mathematics learning approach which assume that mathematics as human activity is Realistics Mathematics Education (RME). Therefore, this study aimed to design simple fraction learning trajectory using RME approach through traditional game namely siki Doka as a context. The Research method used in this research is Design Research which conducted in SDN Angkasa Kupang and SDK. Tunas Bangsa Kupang in the third grade students. The result showed that students were very enthusiastic and enjoy all the learning activities because they learned while playing, drawing, Coloring, cutting and arrange colorful origami paper. Students not only understand the concept of simple fractions, compare simple fractions, and solve problems related to simple fractions as well they are already involved in the activities to found the concept of fractional addition and its multiples.Keyword: Fractional Learning, Concepts of Fraction, comparing fraction, Fractional Learning using RME approach, fraction learning using traditional game.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.