Sexual reproduction and the exchange of genetic information are essential biological processes for species across all branches of the tree of life. Over the last four decades, biochemists have continued to identify many of the factors that facilitate reproduction, but the molecular mechanisms that mediate this process continue to elude us. However, a recurring observation in this research has been the rapid evolution of reproductive proteins. In animals, the competing interests of males and females often result in arms race dynamics between pairs of interacting proteins. This phenomenon has been observed in all stages of reproduction, including pheromones, seminal fluid components, and gamete recognition proteins. In this article, we review how the integration of evolutionary theory with biochemical experiments can be used to study interacting reproductive proteins. Examples are included from both model and non-model organisms, and recent studies are highlighted for their use of state-of-the-art genomic and proteomic techniques. Significance Despite decades of research, our understanding of the molecular mechanisms that mediate fertilization remain poorly characterized. To date, molecular evolutionary studies on both model and non-model organisms have provided some of the best inferences to elucidating the molecular underpinnings of animal reproduction. This review article details how biochemical and evolutionary experiments have jointly enhanced the field for 40 years, and how recent work using high-throughput genomic and proteomic techniques have shed additional insights into this crucial biological process.
During the annual mating season, the mental gland of male plethodontid salamanders diverts its protein synthesizing capacity to the production of courtship pheromones that increase female receptivity. Plethodontid modulating factor (PMF), a highly disulfidebonded 7-kDa pheromone, shows unusual hypervariability with each male expressing >30 isoforms. Twenty-eight PMFs were purified and matched by proteomic analyses to cDNA sequences. In contrast to coding sequence hypervariability, the untranslated regions (UTRs) show extraordinary conservation, no predicted microRNA binding sites, and an overlapping triplet polyadenylation signal. Full-length cDNA sequencing revealed three PMF gene classes containing subclasses of clustered sequences that support ≥13 PMF gene duplications. The unusual phenomena of hypervariable coding regions embedded within extremely conserved UTRs isproposed to occur by a disjunctive evolutionary process. During the short courtship season, the UTRs are hypothesized to subsume and coordinate the transcriptional and translational regulatory mechanisms of the mental gland. PMF, as a secreted protein with limited metabolic feedback in the male, is under minimal mutational restraint and thus has experienced highly accelerated rates of evolution. Consequently, plethodontid salamanders may provide a unique model for furthering our understanding of the selective forces that determine differential rates of gene duplication and evolution in protein families.
Human T cells that recognize lipid Ags presented by highly conserved CD1 proteins often express semi-invariant TCRs, but the true diversity of lipid Ag-specific TCRs remains unknown. We use CD1b tetramers and high-throughput immunosequencing to analyze thousands of TCRs from ex vivo-sorted or in vitro-expanded T cells specific for the mycobacterial lipid Ag, glucose monomycolate. Our results reveal a surprisingly diverse repertoire resulting from editing of germline-encoded gene rearrangements analogous to MHC-restricted TCRs. We used a distance-based metric (TCRDist) to show how this diverse TCR repertoire builds upon previously reported conserved motifs by including subject-specific TCRs. In a South African cohort, we show that TCRDist can identify clonal expansion of diverse glucose monomycolate-specific TCRs and accurately distinguish patients with active tuberculosis from control subjects. These data suggest that similar mechanisms govern the selection and expansion of peptide and lipid Ag-specific T cells despite the nonpolymorphic nature of CD1.
The acidic activation domain (AD) of yeast transcription factor Gal4 plays a dual role in transcription repression and activation through binding to Gal80 repressor and Mediator subunit Med15. The activation function of Gal4 arises from two hydrophobic regions within the 40-residue AD. We show by NMR that each AD region binds the Mediator subunit Med15 using a “fuzzy” protein interface. Remarkably, comparison of chemical shift perturbations shows that Gal4 and Gcn4, two intrinsically disordered ADs of different sequence, interact nearly identically with Med15. The finding that two ADs of different sequence use an identical fuzzy binding mechanism shows a common sequence-independent mechanism for AD-Mediator binding, similar to interactions within a hydrophobic cloud. In contrast, the same region of Gal4 AD interacts strongly with Gal80 via a distinct structured complex, implying that the structured binding partner of an intrinsically disordered protein dictates the type of protein–protein interaction.
Gene co-option is a major force in the evolution of novel biological functions. In plethodontid salamanders, males deliver proteinaceous courtship pheromones to the female olfactory system or transdermally to the bloodstream. Molecular studies identified three families of highly duplicated, rapidly evolving pheromones (PRF, PMF, and SPF). Analyses for Plethodon salamanders revealed pheromone mixtures of primarily PRF and PMF. The current study demonstrates that in Desmognathus ocoee--a plesiomorphic species with transdermal delivery--SPF is the major pheromone component representing >30% of total protein. Chromatographic profiles of D. ocoee pheromones were consistent from May through October. LC/MS-MS analysis suggested uniform SPF isoform expression between individual male D. ocoee. A gene ancestry for SPF with the Three-Finger Protein superfamily was supported by intron-exon boundaries, but not by the disulfide bonding pattern. Further analysis of the pheromone mixture revealed paralogs to peptide hormones that contained mutations in receptor binding regions, such that these novel molecules may alter female physiology by acting as hormone agonists/antagonists. Cumulatively, gene co-option, duplication, and neofunctionalization have permitted recruitment of additional gene families for pheromone activity. Such independent co-option events may be playing a key role in salamander speciation by altering male traits that influence reproductive success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.