In this contribution we further study the classical disordered p = 2 spherical model with Hamiltonian dynamics, or in integrable systems terms, the Neumann model, in the infinite size limit. We summarise the asymptotic results that some of us presented in a recent publication, and we deepen the analysis of the pre-asymptotic dynamics. We also discuss the possible description of the asymptotic steady state with a Generalised Gibbs Ensemble.
We study the motion of a classical particle subject to anisotropic harmonic forces and constrained to move on the SN−1 sphere. In the integrable-systems literature this problem is known as the Neumann model. We choose the spring constants in a way that makes the connection with the so-called p = 2 spherical disordered system transparent. We tackle the problem in the N → ∞ limit by introducing a soft version in which the spherical constraint is imposed only on average over initial conditions. We show that the Generalized Gibbs Ensemble, constructed with N conserved charges in involution, captures the long-time averages of all relevant observables of the soft model after sudden changes in the parameters (quenches). We reveal the full dynamic phase diagram with four different phases in which the particles' position and momentum are both extended, only the position quasi-condenses or condenses, and both condense. The scaling properties of the fluctuations allow us to establish in which of these cases the strict and soft spherical constraints are equivalent. We thus confirm the validity of the GGE hypothesis for the Neumann model on a large portion of the dynamic phase diagram.
We revisit the gradient descent dynamics of the spherical Sherrington–Kirkpatrick (p = 2) model with finite number of degrees of freedom. For fully random initial conditions we confirm that the relaxation takes place in three time regimes: a first algebraic one controlled by the decay of the eigenvalue distribution of the random exchange interaction matrix at its edge in the infinite size limit; a faster algebraic one determined by the distribution of the gap between the two extreme eigenvalues; and a final exponential one determined by the minimal gap sampled in the disorder average. We also analyse the finite size effects on the relaxation from initial states which are almost projected on the saddles of the potential energy landscape, and we show that for deviations scaling as N
−ν
from perfect alignment the system escapes the initial configuration in a time-scale scaling as ln N after which the dynamics no longer ‘self-averages’ with respect to the initial conditions. We prove these statements with a combination of analytic and numerical methods.
We discuss and compare two recently proposed toy models for anomalous transport and Griffiths effects in random systems near the Many-Body Localization transitions: the random dephasing model, which adds thermal inclusions in an Anderson Insulator as local Markovian dephasing channels that heat up the system, and the random Gaussian Orthogonal Ensemble (GOE) approach which models them in terms of ensembles of random regular graphs. For these two settings we discuss and compare transport and dissipative properties and their statistics. We show that both types of dissipation lead to similar Griffiths-like phenomenology, with the GOE bath being less effective in thermalising the system due to its finite bandwidth. We then extend these models to the case of a quasi-periodic potential as described by the André-Aubry-Harper model coupled to random thermal inclusions, that we show to display, for large strength of the quasiperiodic potential, a similar phenomenology to the one of the purely random case. In particular, we show the emergence of subdiffusive transport and broad statistics of the local density of states, suggestive of Griffiths like effects arising from the interplay between quasiperiodic localization and random coupling to the baths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.