We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.
Over the last few years, indoor localization has been a very dynamic research area that has drawn great attention. Many methods have been proposed for indoor positioning as well as navigation services. A big number of them were based on Radio frequency (RF) technology and Radio Signal Strength Indicator (RSSI) for their simplicity of use. The main issues of the studies conducted in this field are related to the improvement of localization factors like accuracy, computational complexity, easiness of deployment and cost. In our study, we used Bluetooth Low Energy (BLE) technology for indoor localization in the context of a smart home where an elderly person can be located using an hybrid system that combines radio, light and sound information. In this paper, we propose a model that averages the received signal strength indication (RSSI) at any distance domain which offered accuracy down to 0.4 meters, depending on the deployment configuration
Background Sleep is essential for human health. Considerable effort has been put into academic and industrial research and in the development of wireless body area networks for sleep monitoring in terms of nonintrusiveness, portability, and autonomy. With the help of rapid advances in smart sensing and communication technologies, various sleep monitoring systems (hereafter, sleep monitoring systems) have been developed with advantages such as being low cost, accessible, discreet, contactless, unmanned, and suitable for long-term monitoring. Objective This paper aims to review current research in sleep monitoring to serve as a reference for researchers and to provide insights for future work. Specific selection criteria were chosen to include articles in which sleep monitoring systems or devices are covered. Methods This review investigates the use of various common sensors in the hardware implementation of current sleep monitoring systems as well as the types of parameters collected, their position in the body, the possible description of sleep phases, and the advantages and drawbacks. In addition, the data processing algorithms and software used in different studies on sleep monitoring systems and their results are presented. This review was not only limited to the study of laboratory research but also investigated the various popular commercial products available for sleep monitoring, presenting their characteristics, advantages, and disadvantages. In particular, we categorized existing research on sleep monitoring systems based on how the sensor is used, including the number and type of sensors, and the preferred position in the body. In addition to focusing on a specific system, issues concerning sleep monitoring systems such as privacy, economic, and social impact are also included. Finally, we presented an original sleep monitoring system solution developed in our laboratory. Results By retrieving a large number of articles and abstracts, we found that hotspot techniques such as big data, machine learning, artificial intelligence, and data mining have not been widely applied to the sleep monitoring research area. Accelerometers are the most commonly used sensor in sleep monitoring systems. Most commercial sleep monitoring products cannot provide performance evaluation based on gold standard polysomnography. Conclusions Combining hotspot techniques such as big data, machine learning, artificial intelligence, and data mining with sleep monitoring may be a promising research approach and will attract more researchers in the future. Balancing user acceptance and monitoring performance is the biggest challenge in sleep monitoring system research.
Fall has become the second leading cause of unintentional injury, death, after road traffic injuries, for the elderly in Europe. This proportion will increase in the next decades and become more than ever a real public health issue. France was selected by the World Health Organization to be the first country to implement a program that reduces the coverage of the dependence. Commercial automatic fall detection devices can help seniors get back on their feet faster by reducing the time of emergency procedure. Many seniors do not take advantage of this potentially life-saving technology mainly because of intrusiveness constraints. After having reminded the context and the challenges of fall detection systems, this paper presents an original device which is unobtrusive, comfortable and very effective. The hardware architecture embedded into the sole and a new fall detection algorithm based on acceleration and time thresholds are presented. The algorithm introduces a new concept of differential acceleration to eliminate some drawbacks of current systems. Tests were carried out under real life conditions by 6 young participants for different ADLs. The data were analyzed blindly. We compared the detected falls and found a 100% sensibility and more than 93% sensitivity for all participants and scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.