International audienceWeighted timed games are played by two players on a timed automaton equipped with weights: one player wants to minimise the accumulated weight while reaching a target, while the other has an opposite objective. Used in a reactive synthesis perspective, this quantitative extension of timed games allows one to measure the quality of controllers. Weighted timed games are notoriously difficult and quickly undecidable, even when restricted to non-negative weights. Decidability results exist for subclasses of one-clock games, and for a subclass with non-negative weights defined by a semantical restriction on the weights of cycles. In this work, we introduce the class of divergent weighted timed games as a generalisation of this semantical restriction to arbitrary weights. We show how to compute their optimal value, yielding the first decidable class of weighted timed games with negative weights and an arbitrary number of clocks. In addition, we prove that divergence can be decided in polynomial space. Last, we prove that for untimed games, this restriction yields a class of games for which the value can be computed in polynomial time
We solve in a purely symbolic way the robust controller synthesis problem in timed automata with Büchi acceptance conditions. The goal of the controller is to play according to an accepting lasso of the automaton, while resisting to timing perturbations chosen by a competing environment. The problem was previously shown to be PSPACEcomplete using regions-based techniques, but we provide a first tool solving the problem using zones only, thus more resilient to state-space explosion problem. The key ingredient is the introduction of branching constraint graphs allowing to decide in polynomial time whether a given lasso is robust, and even compute the largest admissible perturbation if it is. We also make an original use of constraint graphs in this context in order to test the inclusion of timed reachability relations, crucial for the termination criterion of our algorithm. Our techniques are illustrated using a case study on the regulation of a train network. This work was funded by ANR project Ticktac (ANR-18-CE40-0015).
Given a Markov decision process (MDP) M and a formula Φ, the strategy synthesis problem asks if there exists a strategy σ s.t. the resulting Markov chain M [σ] satisfies Φ. This problem is known to be undecidable for the probabilistic temporal logic PCTL. We study a class of formulae that can be seen as a fragment of PCTL where a local, bounded horizon property is enforced all along an execution. Moreover, we allow for linear expressions in the probabilistic inequalities. This logic is at the frontier of decidability, depending on the type of strategies considered. In particular, strategy synthesis is decidable when strategies are deterministic while the general problem is undecidable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.