We present hydrodynamic simulations of a major merger of disk galaxies, and study the ISM dynamics and star formation properties. High spatial and mass resolutions of 12 pc and 4 × 10 4 M ⊙ allow to resolve cold and turbulent gas clouds embedded in a warmer diffuse phase. We compare to lower resolution models, where the multiphase ISM is not resolved and is modeled as a relatively homogeneous and stable medium. While merger-driven bursts of star formation are generally attributed to large-scale gas inflows towards the nuclear regions, we show that once a realistic ISM is resolved, the dominant process is actually gas fragmentation into massive and dense clouds and rapid star formation therein. As a consequence, star formation is more efficient by a factor of up to ∼ 10 and is also somewhat more extended, while the gas density probability distribution function (PDF) rapidly evolves towards very high densities. We thus propose that the actual mechanism of starburst triggering in galaxy collisions can only be captured at high spatial resolution and when the cooling of gas is modeled down to less than 10 3 K. Not only does our model reproduce the properties of the Antennae system, but it also explains the "starburst mode" revealed recently in high-redshift mergers compared to quiescent disks.
We present a self-consistent hydrodynamical simulation of a Milky Way-like galaxy at a resolution of 0.05 pc. The model includes star formation and a new implementation of stellar feedback through photoionization, radiative pressure and supernovae. The simulation resolves the structure of the interstellar medium at sub-parsec resolution for a few cloud lifetimes and at 0.05 pc for about a cloud-crossing time. The turbulence cascade and gravitation from kpc scales are de facto included in smaller structures like molecular clouds. We show that the formation of a bar influences the dynamics of the central˜100 pc by creating resonances. At larger radii, the spiral arms host the formation of regularly spaced clouds: beads on a string and spurs. These instabilities pump turbulent energy into the gas, generally in the supersonic regime. Because of asymmetric drift, the supernovae explode outside their gaseous nursery, which diminishes the effect of feedback on the structure of clouds. The evolution of clouds is thus mostly due to fragmentation and gas consumption, regulated mainly by supersonic turbulence. The transition from turbulence-supported to self-gravitating gas is detected in the gas density probability distribution function at˜2000 cm-3. The power-spectrum density suggests that gravitation governs the hierarchical organization of structures from the galactic scale down to a few pc.
Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps.Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the ISM as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion-dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early-type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.