Precise control over molecular movement is of fundamental and practical importance in physics, biology, and chemistry. At nanoscale, the peculiar functioning principles and the synthesis of individual molecular actuators and machines has been the subject of intense investigations and debates over the past 60 years. In this review, we focus on the design of collective motions that are achieved by integrating, in space and time, several or many of these individual mechanical units together. In particular, we provide an in-depth look at the intermolecular couplings used to physically connect a number of artificial mechanically active molecular units such as photochromic molecular switches, nanomachines based on mechanical bonds, molecular rotors, and light-powered rotary motors. We highlight the various functioning principles that can lead to their collective motion at various length scales. We also emphasize how their synchronized, or desynchronized, mechanical behavior can lead to emerging functional properties and to their implementation into new active devices and materials.
A current challenge in the field of artificial molecular machines is the synthesis and implementation of systems that can produce useful work when fuelled with a constant source of external energy. The first experimental achievements of this kind consisted of machines with continuous unidirectional rotations and translations that make use of 'Brownian ratchets' to bias random motions. An intrinsic limitation of such designs is that an inversion of directionality requires heavy chemical modifications in the structure of the actuating motor part. Here we show that by connecting subunits made of both unidirectional light-driven rotary motors and modulators, which respectively braid and unbraid polymer chains in crosslinked networks, it becomes possible to reverse their integrated motion at all scales. The photostationary state of the system can be tuned by modulation of frequencies using two irradiation wavelengths. Under this out-of-equilibrium condition, the global work output (measured as the contraction or expansion of the material) is controlled by the net flux of clockwise and anticlockwise rotations between the motors and the modulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.