Future deep HI surveys will be essential for understanding the nature of galaxies and the content of the Universe. However, the large volume of these data will require distributed and automated processing techniques. We introduce LiSA, a set of python modules for the denoising, detection and characterization of HI sources in 3D spectral data. LiSA was developed and tested on the Square Kilometer Array Science Data Challenge 2 dataset, and contains modules and pipelines for easy domain decomposition and parallel execution. LiSA contains algorithms for 2D-1D wavelet denoising using the starlet transform and flexible source finding using null-hypothesis testing. These algorithms are lightweight and portable, needing only a few user-defined parameters reflecting the resolution of the data. LiSA also includes two convolutional neural networks developed to analyse data cubes which separate HI sources from artifacts and predict the HI source properties. All of these components are designed to be as modular as possible, allowing users to mix and match different components to create their ideal pipeline. We demonstrate the performance of the different components of LiSA on the SDC2 dataset, which is able to find 95% of HI sources with SNR > 3 and accurately predict their properties.
With the advent of the Square Kilometre Array Observatory (SKAO), scientists will be able to directly observe the Epoch of Reionization by mapping the distribution of neutral hydrogen at different redshifts. While physically motivated results can be simulated with radiative transfer codes, these simulations are computationally expensive and can not readily produce the required scale and resolution simultaneously. Here we introduce the Physics-Informed neural Network for reIONization (PINION), which can accurately and swiftly predict the complete 4-D hydrogen fraction evolution from the smoothed gas and mass density fields from pre-computed N-body simulation. We trained PINION on the C2-Ray simulation outputs and a physics constraint on the reionization chemistry equation is enforced. With only five redshift snapshots, PINION can accurately predict the entire reionization history between z = 6 and 12. We evaluate the accuracy of our predictions by analysing the dimensionless power spectra and morphology statistics estimations against C2-Ray results. We show that while the network’s predictions are in very good agreement with simulation to redshift z > 7, the network’s accuracy suffers for z < 7. We motivate how PINION performance could be improved using additional inputs and potentially generalized to large-scale simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.