The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) pandemic has attracted interest because of its global rapid spread, clinical severity, high mortality rate and capacity to overwhelm healthcare systems [1, 2]. SARS-CoV-2 transmission occurs mainly through droplets, although surface contamination contributes and debate continues on aerosol transmission [3-5]. The disease is usually characterised by initial signs and symptoms [4-9] similar to those of related viral infections (e.g. influenza, SARS, Middle East respiratory syndrome) and tuberculosis (TB), although prognosis and complications sometimes differ. Experience with concomitant TB and COVID-19 is extremely limited. One case-control study of COVID-19 patients with interferon-γ release assay-confirmed TB infection [10] and a single case of TB with COVID-19 have been submitted to, but not yet published in, peer-reviewed journals [11]. In a recent analysis of 1217 consecutive respiratory specimens collected from COVID-19 patients (Mycobacterium tuberculosis was not tested), the authors concluded that higher rates of co-infection between SARS-CoV-2 and other respiratory pathogens can be expected [12]. The present study describes the first-ever global cohort of current or former TB patients (post-TB treatment sequelae) with COVID-19, recruited by the Global Tuberculosis Network (GTN) in eight countries and three continents. No analysis for determinants of outcome was attempted. The study is nested within the GTN project monitoring adverse drug reactions [13, 14] for which the coordinating centre has an ethics committee approval, alongside ethics clearance from participating centres according to respective national regulation [13, 14]. A specific nested database was created in collaboration with the eight countries reporting patients with TB and COVID-19; the remaining countries had not yet observed COVID-19 in their patients at the time this manuscript was written. Continuous variables, if not otherwise specified, are presented as medians with interquartile ranges. Overall, 49 consecutive patients with current or former TB and COVID-19 from 26 centres in Belgium (n=1), Brazil (Porto Alegre, Rio Grande do Sul State; n=1), France (n=12), Italy (n=17), Russia (Moscow Region; n=6), Singapore (n=1), Spain (n=10) and Switzerland (Vaud Canton; n=1) were recruited (dataset updated as of
The use of bedaquiline combined with other active drugs has the potential to achieve high culture conversion rates in complicated MDR and XDR tuberculosis cases, with a reassuring safety profile at 6 months of treatment.
Bedaquiline, a recently approved drug for the treatment of multidrug-resistant tuberculosis (MDR-TB), is recommended for a duration of 24 weeks. There are scarce data on patients treated with this drug outside clinical trials.All MDR-TB patients who started treatment from January 1, 2011 to December 31, 2013 and received ≥30 days of bedaquiline were included in a multicentre observational cohort.Among 45 MDR-TB patients, 53% harboured isolates resistant to both fluoroquinolones and second-line injectables, and 38% harboured isolates resistant to one of these drug classes. Median bedaquiline treatment duration was 361 days and 33 patients (73%) received prolonged (>190 days) bedaquiline treatment. Overall, 36 patients (80%) had favourable outcome, five were lost to follow-up, three died, and one failed and acquired bedaquiline resistance. No cases of recurrence were reported. Severe and serious adverse events were recorded in 60% and 18% of patients, respectively. Values of Fridericia-corrected QT interval (QTcF) >500 ms were recorded in 11% of patients, but neither arrhythmias nor symptomatic cardiac side-effects occurred. Bedaquiline was discontinued in three patients following QTcF prolongation. No significant differences in outcomes or adverse events rates were observed between patients receiving standard and prolonged bedaquiline treatment.Bedaquiline-containing regimens achieved favourable outcomes in a large proportion of patients. Prolonged bedaquiline treatment was overall well tolerated in this cohort.
Bedaquiline (BDQ) has demonstrated potent clinical activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis complex strains [1-3]. It has now been used in >50 countries, and it is estimated that ∼2500 patients had been treated with BDQ by the end of 2015. In spite of its recent clinical use, there are few reports of BDQ-resistant strains [4, 5]. Mutations in the rv0678 gene encoding the MmpL5 efflux pump repressor generate low-level BDQ resistance and clofazimine (CFZ) cross-resistance [6]. To our knowledge, this is the sole mechanism of BDQ resistance described in clinical strains [4, 5]. Despite its introduction in France in 2011 for XDR-and MDR-tuberculosis (TB) treatment, we report herein four BDQ-resistant cases, and discuss strategies to avoid a surge of BDQ resistance. In France, all MDR M. tuberculosis complex strains are sent to the National Reference Centre for Mycobacteria (NRC) for complete genotypic and phenotypic drug susceptibility testing (DST), including BDQ since 2014. BDQ minimum inhibitory concentration (MIC) was measured in 7H11 medium in polystyrene petri dishes for all strains that were resistant to a screening concentration of 64 mg•L −1 in Lowenstein-Jensen medium. For each MIC measure, H37Rv was included as susceptible control. For all strains screened as BDQ resistant, the atpE and rv0678 genes were sequenced [4]. BDQ dry powder was supplied by Janssen (Issy-les-Moulineaux, France). The clinical history of patients harbouring BDQ-resistant strains was retrospectively abstracted from medical records. Ethics approval of the study protocol was granted by Bligny Hospital institutional review board (Briis-sous-Forges, France).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.