We assessed the effects of irradiance received during growth on the vulnerability of Fagus sylvatica L. xylem vessels to water-stress-induced embolism. The measurements were conducted on (1) potted saplings acclimated for 2 years under 100% and 12% incident global radiation and (2) branches collected from sun-exposed and shaded sides of adult trees. Both experiments yielded similar results. Light-acclimated shoots were less vulnerable to embolism. Xylem water potential levels producing 50% loss of hydraulic conductivity were lower in sun-exposed branches and seedlings than in shade-grown ones (-3·0 versus -2·3 MPa on average). The differences in vulnerability were not correlated with differences in xylem hydraulic conductivity nor vessel diameter. Resistance to cavitation was correlated with transpiration rates, midday xylem and leaf water potentials in adult trees. We concluded that vulnerability to cavitation in Fagus sylvatica may acclimate to contrasting ambient light conditions.
Summary1. We present measurements of CO 2 fluxes over 2 years above and within a young Beech stand in the east of France. This site is part of the Euroflux network set up to monitor fluxes over representative European forests. 2. The net ecosystem carbon (C) exchange was derived from continuous eddy flux measurements. Major components of the total flux (i.e. soil and above-ground biomass respiration and assimilation of leafy branches) were measured independently using chambers. The main C stocks (i.e. root, stem and branch biomass) were also quantified. 3. Daily minima of CO 2 flux were typically around -20 µ mol CO 2 m -2 s -1 during the period of full leaf expansion, while night-time ecosystem respiration varied between 5 and 15 µ mol CO 2 m -2 s -1. The seasonal pattern of net ecosystem assimilation was very close to that of net assimilation at the single branch scale. The seasonal variation of net ecosystem exchange was closely related to leaf expansion and soil water content during the dry year of 1996. 4. Measurements of ecosystem respiration (eddy flux) were corrected for CO 2 storage within the stand. This C flux showed a seasonal pattern, the maximum rates (4-7 g C m -2 day -1 ) occurring in spring and summer, and appeared to be correlated with soil temperature. Temporal variation of soil respiration showed the same pattern, and effects of both temperature and soil drying were found. Annual soil respiration was ≈ 70% of ecosystem respiration. Root respiration was 60% of the total below-ground respiration. 5. Annual net C exchange was -218 and -257 g C m -2 in 1996 and 1997, respectively, corresponding to net C uptake by the forest. These values are much lower than the annual biomass increment (stems and large roots) of the stand: 427 and 471 g C m -2 year -1 , respectively. The difference may be explained by a release of CO 2 from the decomposition of woody debris. 6. Ecosystem C loss by respiration was 800-1000 g C m -2 year -1 . Gross C gain was 1000-1300 g C m -2 year -1 . Ecosystem respiration therefore played a major role in the annual C balance of this forest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.