Termination analyzers generally synthesize ranking functions or relations, which represent checkable proofs of their results. In [23], we proposed an approach for conditional termination analysis based on abstract fixpoint computation by policy iteration. This method is not based on ranking functions and does not directly provide a ranking relation, which makes the comparison with existing approaches difficult. In this paper we study the relationships between our approach and ranking functions and relations, focusing on extensions of linear ranking functions. We show that it can work on programs admitting a specific kind of segmented ranking functions, and that the results can be checked by the construction of a disjunctive ranking relation. Experimental results show the interest of this approach.
We propose modelling for a facilities localization problem in the context of multimode transportation. The applicative goal is to locate service facilities such as schools or hospitals while optimizing the different transportation modes to these facilities. We formalize the School Problem and solve it first exactly using an adapted ϵ-constraint multiobjective method. Because of the size of the instances considered, we have also explored the use of heuristic methods based on evolutionary multiobjective frameworks, namely, NSGA2 and a modified version of PAES. Those methods are mixed with an original local search technique to provide better results. Numerical comparisons of solutions sets quality are made using the hypervolume metric. Based on the results for test-cases that can be solved exactly, efficient implementation for PAES and NSGA2 allows execution times comparison for large instances. Results show good performances for the heuristic approaches as compared to the exact algorithm for small test-cases. Approximate methods present a scalable behavior on largest problem instances. A master/slave parallelization scheme also helps to reduce execution times significantly for the modified PAES approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.