We present a fibre-optical quantum key distribution system. It works at 1550nm and is based on the plug&play setup. We tested the stability under field conditions using aerial and terrestrial cables and performed a key exchange over 67 km between Geneva and Lausanne.
We present and demonstrate a new protocol for practical quantum cryptography, tailored for an implementation with weak coherent pulses to obtain a high key generation rate. The key is obtained by a simple time-of-arrival measurement on the dataline; the presence of an eavesdropper is checked by an interferometer on an additional monitoring line. The setup is experimentally simple; moreover, it is tolerant to reduced interference visibility and to photon number splitting attacks, thus featuring a high efficiency in terms of distilled secret bit per qubit.
We present a fully automated quantum key distribution prototype running at 625 MHz clock rate. Taking advantage of ultra low loss (ULL) fibres and low-noise superconducting detectors, we can distribute 6,000 secret bits per second over 100 km and 15 bits per second over 250km.
In this paper, we report on the performance of the SwissQuantum quantum key distribution (QKD) network. The network was installed in the Geneva metropolitan area and run for more than one and a half years, from the end of March 2009 to the beginning of January 2011. The main goal of this experiment was to test the reliability of the quantum layer over a long period of time in a production environment. A key management layer has been developed to manage the key between the three nodes of the network. This QKD-secure network was used by end-users through an application layer.PACS numbers: 03.67.Dd, 03.67.Hk, ‡ D Stucki and M Legré contributed equivalently to the writing of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.