Background Weaning is a critical phase in the pigs’ life and gut health might be compromised. Gluconic acid was shown to be poorly absorbed but readily fermented to butyrate in the gut which in turn can improve gut function. Hence, a total of 144 weaning pigs were fed the experimental diets for 42 days. Three treatments were replicated in 8 pens with 6 piglets each: control; low dietary dose of gluconic acid, 9 g/kg; and high dietary dose of gluconic acid, 18 g/kg. After 21 days, one piglet from each pen was sampled for blood haematology and biochemistry, fore- and hindgut digesta characteristics and microbiota, and distal small intestinal histo-morphological indices and gene expression. Results Feeding gluconic acid enhanced performance in period d 0–14 post-weaning, in particular feed intake was increased (P = 0.028), though the high dose did not show benefits over the low dose. Regarding d 0–42, feed intake was elevated (P = 0.026). At d 21, piglets fed 18 g/kg gluconic acid showed a trend for lower number of total white blood cells (P = 0.060), caused by particularly lower numbers of lymphocytes as compared to control (P = 0.028). Highly reduced plasma urea was found for groups fed gluconic acid, it amounted to 2.6 and 2.6 mmol/L for the 9 and 18 g/kg level, respectively, as compared to 3.8 mmol/L in control (P = 0.003). Feeding gluconic acid promoted the relative abundance of lactic-acid-producing and acid-utilizing bacteria. In distal small intestine, Lactobacillus amylovorus increased substantially from 11.3 to 82.6% for control and gluconic acid 18 g/kg, respectively (P < 0.05). In mid-colon, the butyrate producers Faecalibacterium prausnitzii (P > 0.05) and Megasphaera elsdenii (P < 0.05) showed highest abundance in gluconic acid 18 g/kg. Consequently, in caecum and mid-colon, increased relative molar percentage of butyrate were found, e.g., 10.0, 12.9 et 14.7% in caecum for gluconic acid at 0, 9, and 18 g/kg, respectively (P = 0.046). Elevated mRNA anti-inflammatory cytokine and survival signalling levels in distal small intestinal mucosa were found by feeding gluconic acid which might be mediated by butyrate. Conclusions Gluconic acid may have potential to alleviate the postweaning growth-check in pigs by altering microbiota composition and fermentation in the gut.
Some pharmaceutical excipients are able to modify intestinal permeability, thus influencing drug absorption and bioavailability. The effect of four polyols (mannitol, maltitol, sorbitol and xylitol) on the permeability of seven active pharmaceutical ingredients (API), representing different BCS classes (furosemide, amiloride, atenolol, ranitidine, nadolol, L-thyroxine and acyclovir), was investigated using the Caco-2 cell permeability model. Analytical methods for the sensitive polyol and API quantification were developed using Ultra High Performance Liquid Chromatography coupled to triple-quadrupole Mass Spectrometry (UHPLC-QqQ). Apparent permeability coefficients (Papp) were calculated from the measured concentrations in the apical and basolateral compartments. The cell monolayer remained intact throughout the experiment in all trials, neither significant Lucifer Yellow (LY) passage, nor modification of the electrical resistance was detected, demonstrating that no active principle or excipient (or combinations thereof) modulated the paracellular transport. The Papp values for apical to basolateral and basolateral to apical directions of drug + excipient combinations were compared with the Papp values for the drug substance alone. Our results show that mannitol, maltitol, sorbitol and xylitol did not modify the permeability of furosemide, amiloride, atenolol, ranitidine, nadolol, acyclovir and L-thyroxine APIs. Moreover, the presence of polyols did not alter the efflux of the active principle (basolateral to apical).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.