Abstract. Flood maps are needed for emergency response, research, and planning. The Height Above Nearest Drainage (HAND) technique is a low-complexity, terrain-based approach for inundation mapping using elevation data, discharge–height relationships, and streamflow inputs. The recent operational capacities of the NOAA National Water Model (NWM) and preprocessed HAND products from the University of Texas offer an operational framework for real-time and forecast flood guidance across the US. In this study, we evaluate the integrated National Water Model –Height Above Nearest Drainage (NWM–HAND) flood mapping approach using 28 remotely sensed inundation maps and 54 reach-level catchments. The results show the NWM–HAND method tends to underpredict inundated cells in 4th-order and lower-order reaches but does better with a slight tendency to overpredict in high-order reaches. An evaluation of the roughness coefficient used in the production of synthetic rating curves suggests it is the most important parameter for correcting these errors. Persistent inaccuracies do occur when NWM streamflow predictions are substantially biased (>60 % mean absolute error between NWM and observed streamflow) and in regions of low relief. Overall, the NWM–HAND method does not accurately capture inundated cells but is quite capable of highlighting regions likely to be at risk in 4th-order streams and higher. While NWM–HAND should be used with caution when identifying flood boundaries or making decisions of whether a cell is dry or wet, its applicability as a high-level guidance tool along larger rivers is noteworthy.
Real‐time flood inundation mapping is vital for emergency response to help protect life and property. Inundation mapping transforms rainfall forecasts into meaningful spatial information that can be utilized before, during, and after disasters. While inundation mapping has traditionally been conducted on a local scale, automated algorithms using topography data can be utilized to efficiently produce flood maps across the continental scale. The Height Above the Nearest Drainage method can be used in conjunction with synthetic rating curves (SRCs) to produce inundation maps, but the performance of these inundation maps needs to be assessed. Here we assess the accuracy of the SRCs and calculate statistics for comparing the SRCs to rating curves obtained from hydrodynamic models calibrated against observed stage heights. We find SRCs are accurate enough for large‐scale approximate inundation mapping while not as accurate when assessing individual reaches or cross sections. We investigate the effect of terrain and channel characteristics and observe reach length and slope predict divergence between the two types of rating curves, and SRCs perform poorly for short reaches with extreme slope values. We propose an approach to recalculate the slope in Manning’s equation as the weighted average over a minimum distance and assess accuracy for a range of moving window lengths.
Projections of future climate change trends in four urban centers of southwest Ethiopia were examined under a high Representative Concentration Pathways (RCP8.5) scenario for near- (2030), mid- (2050), and long-term (2080) periods based on high-resolution (0.220) Coordinated Regional Climate Downscaling Experiment (CORDEX) for Africa data. The multi-model ensemble projects annual maximum and minimum temperatures increasing by 0.047 °C per year (R2 > 0.3) and 0.038 °C per year (R2 > 0.7), respectively, with the rates increased by a factor of 10 for decadal projections between the 2030s and 2080s. The monthly maximum temperature increase is projected to be 1.41 °C and 2.82 °C by 2050 and 2080, respectively. In contrast, the monthly minimum temperature increase is projected to reach +3.2 °C in 2080. The overall seasonal multi-model ensemble average shows an increment in maximum temperature by +1.1 °C and +1.9 °C in 2050 and 2080, with the highest change in the winter, followed by spring, summer, and autumn. Similarly, the future minimum temperature is projected to increase across all seasons by 2080, with increases ranging from 0.4 °C (2030s) to 3.2 °C (2080s). All models consistently project increasing trends in maximum and minimum temperatures, while the majority of the models projected declining future precipitation compared to the base period of 1971–2005. A two-tailed T-test (alpha = 0.05) shows a significant change in future temperature patterns, but no significant changes in precipitation were identified. Changes in daily temperature extremes were found in spring, summer, and autumn, with the largest increases in extreme heat in winter. Therefore, our results support proactive urban planning that considers suitable adaptation and mitigation strategies against increasing air temperatures in urban centers in southwest Ethiopia. Future work will examine the likely changes in temperature and precipitation extremes.
Abstract. Flood maps are needed for emergency response, research, and planning. The Height Above Nearest Drainage (HAND) technique is a low-complexity, terrain-based approach for inundation mapping from elevation, discharge-height relationship, and streamflow data. The recent operational capacities of the NOAA National Water Model (NWM) and pre-processed HAND products from the University of Texas offer an operational framework for real-time and forecast flood mapping across the United States. This paper offers the first detailed evaluation of the coupled NWM-HAND approach by comparing NWM-HAND simulations to a database of remotely sensed flood maps. These comparisons are made both quantitatively and through a detailed evaluation of selected results. The results show that NWM-HAND performs well in the majority of cases with 70 % of the calculated flood maps yielding an agreement of 80 % or better with the remote sensing observations. Persistent inaccuracies occur in lower-order reaches, regions of low relief, and when the NWM misses substantially either in magnitude or timing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.