The G protein-coupled estrogen receptor (GPER) is a seven-transmembrane-domain receptor that mediates non-genomic estrogen related signaling. After ligand activation, GPER triggers multiple downstream pathways that exert diverse biological effects on the regulation of cell growth, migration and programmed cell death in a variety of tissues. A significant correlation between GPER and the progression of multiple cancers has likewise been reported. Therefore, a better understanding of the role GPER plays in cancer biology may lead to the identification of novel therapeutic targets, especially among estrogen-related cancers. Here, we review cell signaling and detail the functions of GPER in malignancies.
Myeloid derived suppressor cells (MDSC) are very important in tumor immune evasion and they dramatically increased in peripheral blood of patients with osteosarcoma cancer. The association between MDSC and various cytokines has been studied in the peripheral blood. However, little is known about the mechanism drawing MDSC into tumor parenchyma. This study was to analyze the correlation between MDSC subsets and interleukin 18 (IL-18) level in osteosarcoma tumor model and its effect on the immunotherapy. MDSC were isolated from the blood and parenchyma and analyzed in the osteosarcoma tumor model. IL-18 levels were detected by enzyme-linked immunosorbent assay (ELISA) assay, real-time PCR, western blot and flow cytometry. Moreover, combination treatment with IL-18 inhibition and anti-PD1 was conducted to assess the therapeutic effects of IL-18 blockade. Results showed MDSC levels had a positive correlation with IL-18, suggesting IL-18 may attract MDSC into the parenchyma. IL-18 gene and protein expression significantly increased in blood and tumor lysates of tumor-bearing mice. Anti-IL-18 treatment significantly decreased G-MDSC and M-MDSC in the peripheral blood and tumor. Furthermore, combination therapy decreased the tumor burden and increased CD4+ and CD8+ T cell infiltration, as well as the production of interferon gamma (IFNγ) and granzyme B. Our study revealed a possible correlation between MDSC subsets and IL-18 inducing MDSC migration into the tumor tissue, in addition to provide the potential target to enhance the efficacy of immunotherapy in patients with osteosarcoma.
The occurrence and progress of osteoporosis (OP) are partially caused by impaired osteoblast differentiation. Interleukin-I receptor antagonist (IL1RN) is an immune modulatory molecule that commonly functions by means of competing the binding site of IL-1R with IL-1. Although it was recently reported that IL1RN is involved in osteoblast differentiation, the role of IL1RN in osteogenesis remains unclear. In this work, we first investigated the expression pattern of IL1RN in ovariectomy mice and in vitro osteogenic induction of MC3T3-E1 and C3H10T1/2 cells. To verify the exact role of IL1RN in osteoblast differentiation, we established IL1RN-downregulated/upregulated cell lines. The results indicated that IL1RN was constantly expressed in MC3T3-E1 and C3H10T1/2 cells. Interestingly, an increase of IL1RN expression in osteoblasts occurred when osteoblasts were cultured in osteogenic medium (OM). As expected, silencing of IL1RN attenuated the osteogenic effect of OM, while IL1RN overexpression increased the osteogenic staining and promoted the expression of osteogenic markers, including alkaline phosphatase, osterix, and osteocalcin. In addition to evaluating the function of IL1RN in osteoblasts, we also investigated the molecular mechanism of the role of IL1RN in osteoblasts. We found that IL1RN interacts with integrin β3 to activate β-catenin signaling, which finally regulates osteoblast differentiation. Taken together, this study provides the framework that IL1RN, as a novel regulator of osteogenesis, may be a potential therapeutic target for the treatment of OP.
Background: Evidence has revealed the involvement of microRNAs (miRNAs) in modulating osteogenic differentiation, implying the promise of miRNA-based therapies for treating osteoporosis. This study investigated whether miR-181a-5p influences osteogenic differentiation and bone formation and aimed to establish the mechanisms in depth. Methods: Clinical serum samples were obtained from osteoporosis patients, and MC3T3-E1 cells were treated with osteogenic induction medium (OIM) to induce osteogenic differentiation. miR-181a-5p-, Runt-related transcription factor 1 (Runx1)-, and/or allograft inflammatory factor-1 (AIF-1)-associated oligonucleotides or vectors were transfected into MC3T3-E1 cells to explore their function in relation to the number of calcified nodules, alkaline phosphatase (ALP) staining and activity, expression levels of osteogenesis-related proteins, and apoptosis. Luciferase activity, RNA immunoprecipitation, and chromatin immunoprecipitation assays were employed to validate the binding relationship between miR-181a-5p and Runx1, and the transcriptional regulatory relationship between Runx1 and AIF-1. Ovariectomy (OVX)-induced mice were injected with a miR-181a-5p antagonist for in vivo verification. Results: miR-181a-5p was highly expressed in the serum of osteoporosis patients. OIM treatment decreased miR-181a-5p and AIF-1 expression, but promoted Runx1 expression in MC3T-E1 cells. Meanwhile, upregulated miR-181a-5p suppressed OIM-induced increases in calcified nodules, ALP content, and osteogenesis-related protein expression. Mechanically, miR-181a-5p targeted Runx1, which acted as a transcription factor to negatively modulate AIF-1 expression. Downregulated Runx1 suppressed the miR-181a-5p inhibitor-mediated promotion of osteogenic differentiation, and downregulated AIF-1 reversed the miR-181a-5p mimic-induced inhibition of osteogenic differentiation. Tail vein injection of a miR-181a-5p antagonist induced bone formation in OVX-induced osteoporotic mice. Conclusion:In conclusion, miR-181a-5p affects osteogenic differentiation and bone formation partially via the modulation of the Runx1/AIF-1 axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.