Inositol polyphosphate 4 phosphatase type I enzyme (INPP4A) has a well-documented function in the cytoplasm where it terminates the phosphatidylinositol 3-kinase (PI 3-K) pathway by acting as a negative regulator. In this study, we demonstrate for the first time that INPP4A shuttles between the cytoplasm and the nucleus. Nuclear INPP4A is enzymatically active and in dynamic equilibrium between the nucleus and cytoplasm depending on the cell cycle stage, with highest amounts detected in the nucleus during the G/G phase. Moreover, nuclear INPP4A is found to have direct proliferation suppressive activity. Cells constitutively overexpressing nuclear INPP4A exhibit massive apoptosis. In human tissues as well as cell lines, lower nuclear localization of INPP4A correlate with cancerous growth. Together, our findings suggest that nuclear compartmentalization of INPP4A may be a mechanism to regulate cell cycle progression, proliferation and apoptosis. Our results imply a role for nuclear-localized INPP4A in tumor suppression in humans.
Objectives: Human embryonic stem cells are pluripotent cell lines usually derived from human blastocysts. Their potential critically depends on longterm proliferative capacity, developmental potential after prolonged culture, and karyotypic stability. Cell viability is an important parameter for assessing cell sample quality. Here, we elaborate the stored human embryonic stem cell lines' viability in a ready to use form for a period of 9 years (from 2007 to 2015). Materials and Methods: Spare pre implantation stage in vitro fertilized ovum-derived cell lines were cultured in suitable media. Thereafter, they were centrifuged at 1000 revolutions/min over 5 minutes, and pellets were suspended in normal saline. Next, they were tested for viability from storage at -20°C. After being allowed to thaw slowly, the cells were stained with propidium iodide and analyzed using flow cytometry. Images of cells were taken at ×40 and ×100 magnification. Results: At ×100 magnification, cell population size ranged from 0.2 to 2 µm. The percentage of live cells was more than 95% throughout the 9 years. Cells frozen in 2015 showed cell viability of 96.8%. Conclusions: We observed high cell viability in our cell lines for 9 years. Human embryonic stem cell lines in a ready-to-use form can be preserved for longterm purposes. Thus, they could be made available globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.